Houssem Haddar
Orcid: 0000-0003-4423-8697
According to our database1,
Houssem Haddar
authored at least 45 papers
between 2001 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2024
J. Comput. Phys., March, 2024
Computing Singular and Near-Singular Integrals over Curved Boundary Elements: The Strongly Singular Case.
SIAM J. Sci. Comput., 2024
SIAM J. Imaging Sci., 2024
2023
Stability Estimate for an Inverse Problem for the Time Harmonic Magnetic Schrödinger Operator from the Near and Far Field Patterns.
SIAM J. Math. Anal., August, 2023
SIAM J. Sci. Comput., June, 2023
SIAM J. Appl. Math., June, 2023
2022
SIAM J. Sci. Comput., October, 2022
SIAM J. Imaging Sci., September, 2022
CoRR, 2022
CoRR, 2022
2021
SIAM J. Sci. Comput., 2021
Computing weakly singular and near-singular integrals in high-order boundary elements.
CoRR, 2021
CoRR, 2021
2020
Differential Tomography of Micromechanical Evolution in Elastic Materials of Unknown Micro/Macrostructure.
SIAM J. Imaging Sci., 2020
2019
On the Factorization Method for a Far Field Inverse Scattering Problem in the Time Domain.
SIAM J. Math. Anal., 2019
2018
Understanding the Time-Dependent Effective Diffusion Coefficient Measured by Diffusion MRI: the IntraCellular Case.
SIAM J. Appl. Math., 2018
SIAM J. Appl. Math., 2018
2017
SIAM J. Imaging Sci., 2017
A Robust Inversion Method for Quantitative 3D Shape Reconstruction from Coaxial Eddy Current Measurements.
J. Sci. Comput., 2017
Sampling methods for reconstructing the geometry of a local perturbation in unknown periodic layers.
Comput. Math. Appl., 2017
Proceedings of the international conference on computational mathematics and inverse problems honoring Peter Monk.
Comput. Math. Appl., 2017
2016
A Macroscopic Model for the Diffusion MRI Signal Accounting for Time-Dependent Diffusivity.
SIAM J. Appl. Math., 2016
SIAM J. Appl. Math., 2016
A Robust Inversion Method According to a New Notion of Regularization for Poisson Data with an Application to Nanoparticle Volume Determination.
SIAM J. Appl. Math., 2016
SIAM, ISBN: 978-1-61197-445-4, 2016
2015
2014
SIAM J. Appl. Math., 2014
Comput. Math. Appl., 2014
2012
On Simultaneous Identification of the Shape and Generalized Impedance Boundary Condition in Obstacle Scattering.
SIAM J. Sci. Comput., 2012
2011
SIAM J. Math. Anal., 2011
SIAM J. Math. Anal., 2011
Proceedings of the 19th European Signal Processing Conference, 2011
2010
SIAM J. Math. Anal., 2010
SIAM J. Math. Anal., 2010
Preprocessing the Reciprocity Gap Sampling Method in Buried-Object Imaging Experiments.
IEEE Geosci. Remote. Sens. Lett., 2010
J. Comput. Appl. Math., 2010
High-order accurate thin layer approximations for time-domain electromagnetics, Part II: Transmission layers.
J. Comput. Appl. Math., 2010
Inverse impedance boundary problem via the conformal mapping method: the case of small impedances.
ARIMA J., 2010
2005
2004
On the Fréchet Derivative for Obstacle Scattering with an Impedance Boundary Condition.
SIAM J. Appl. Math., 2004
2003
The Linear Sampling Method for Solving the Electromagnetic Inverse Scattering Problem.
SIAM J. Sci. Comput., 2003
2001
Effective Boundary Conditions for Thin Ferromagnetic Layers: The One-Dimensional Model.
SIAM J. Appl. Math., 2001