Hongwei Liu
Orcid: 0000-0003-3503-8220Affiliations:
- Central China Normal University, School of Mathematics and Statistics, Wuhan, China
- Wuhan University, China (PhD 2003)
According to our database1,
Hongwei Liu
authored at least 68 papers
between 2009 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
IEEE Trans. Inf. Theory, November, 2024
IEEE Trans. Inf. Theory, June, 2024
Des. Codes Cryptogr., May, 2024
Discret. Math., 2024
2023
Des. Codes Cryptogr., December, 2023
Appl. Algebra Eng. Commun. Comput., July, 2023
IEEE Trans. Inf. Theory, April, 2023
Des. Codes Cryptogr., April, 2023
IEEE Trans. Inf. Theory, February, 2023
IEEE Trans. Inf. Theory, February, 2023
2022
Generalized Pair Weights of Linear Codes and Linear Isomorphisms Preserving Pair Weights.
IEEE Trans. Inf. Theory, 2022
Finite Fields Their Appl., 2022
Des. Codes Cryptogr., 2022
2021
Finite Fields Their Appl., 2021
Hamming distances of constacyclic codes of length 3<i>p</i><sup><i>s</i></sup> and optimal codes with respect to the Griesmer and Singleton bounds.
Finite Fields Their Appl., 2021
Des. Codes Cryptogr., 2021
2020
IEEE Trans. Inf. Theory, 2020
Homogeneous metric and matrix product codes over finite commutative principal ideal rings.
Finite Fields Their Appl., 2020
Finite Fields Their Appl., 2020
Discret. Math., 2020
Discret. Math., 2020
Des. Codes Cryptogr., 2020
CoRR, 2020
2019
IEEE Trans. Inf. Theory, 2019
Finite Fields Their Appl., 2019
Discret. Math., 2019
Discret. Math., 2019
Appl. Algebra Eng. Commun. Comput., 2019
2018
IEEE Trans. Inf. Theory, 2018
2017
IEEE Trans. Inf. Theory, 2017
IEEE Trans. Inf. Theory, 2017
On structure and distances of some classes of repeated-root constacyclic codes over Galois rings.
Finite Fields Their Appl., 2017
Des. Codes Cryptogr., 2017
Several Classes of Trace Codes With Either Optimal Two Weights or a Few Weights over F<sub>q</sub>+uF<sub>q</sub>.
CoRR, 2017
2016
Constacyclic codes of length 2p<sup>s</sup> over F<sub>p<sup>m</sup></sub>+uF<sub>p<sup>m</sup></sub>.
Finite Fields Their Appl., 2016
Des. Codes Cryptogr., 2016
A Note on Hamming distance of constacyclic codes of length p<sup>s</sup> over F<sub>p<sup>m</sup></sub> + uF<sub>p<sup>m</sup></sub>.
CoRR, 2016
Appl. Algebra Eng. Commun. Comput., 2016
2015
Finite Fields Their Appl., 2015
Finite Fields Their Appl., 2015
Discret. Math., 2015
Adv. Math. Commun., 2015
Appl. Algebra Eng. Commun. Comput., 2015
2014
Finite Fields Their Appl., 2014
Des. Codes Cryptogr., 2014
Discret. Appl. Math., 2014
2013
2012
Jacobi Forms and Hilbert-Siegel Modular Forms over Totally Real Fields and Self-Dual Codes over Polynomial Rings Z<sub>2m</sub>[x] / <g(x)>.
Ars Comb., 2012
2011
2010
Int. J. Inf. Coding Theory, 2010
2009