Hongmin Ren
According to our database1,
Hongmin Ren
authored at least 39 papers
between 2006 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2024
Sci. Comput. Program., 2024
2021
On the complexity of extending the convergence ball of Wang's method for finding a zero of a derivative.
J. Complex., 2021
2016
Appl. Math. Comput., 2016
2015
J. Comput. Appl. Math., 2015
Appl. Math. Comput., 2015
2013
Int. J. Comput. Math., 2013
Solving nonlinear equations system via an efficient genetic algorithm with symmetric and harmonious individuals.
Appl. Math. Comput., 2013
2012
Improved local analysis for a certain class of iterative methods with cubic convergence.
Numer. Algorithms, 2012
Innov. Syst. Softw. Eng., 2012
On the semi-local convergence of Halley's method under a center-Lipschitz condition on the second Fréchet derivative.
Appl. Math. Comput., 2012
Appl. Math. Comput., 2012
2011
Numer. Algorithms, 2011
Convergence of the modified Halley's method for multiple zeros under Hölder continuous derivative.
Numer. Algorithms, 2011
J. Comput. Appl. Math., 2011
2010
On the local convergence of inexact Newton-type methods under residual control-type conditions.
J. Comput. Appl. Math., 2010
Appl. Math. Comput., 2010
Appl. Math. Comput., 2010
Convergence radius of the modified Newton method for multiple zeros under Hölder continuous derivative.
Appl. Math. Comput., 2010
Proceedings of the Seventh International Conference on Fuzzy Systems and Knowledge Discovery, 2010
2009
Numer. Algorithms, 2009
Numer. Algorithms, 2009
Math. Comput. Model., 2009
On the convergence of modified Newton methods for solving equations containing a non-differentiable term.
J. Comput. Appl. Math., 2009
Appl. Math. Comput., 2009
Convergence ball and error analysis of a family of iterative methods with cubic convergence.
Appl. Math. Comput., 2009
On convergence of the modified Newton's method under Hölder continuous Fréchet derivative.
Appl. Math. Comput., 2009
Appl. Math. Comput., 2009
2008
Appl. Math. Comput., 2008
A second-derivative-free modified Secant-like method with order 2.732... for unconstrained optimization.
Appl. Math. Comput., 2008
Appl. Math. Comput., 2008
2007
Appl. Math. Comput., 2007
Appl. Math. Comput., 2007
Appl. Math. Comput., 2007
2006
Appl. Math. Comput., 2006
A new semilocal convergence theorem for the Secant method under Hölder continuous divided differences.
Appl. Math. Comput., 2006
New sufficient convergence conditions of the Secant method for nondifferentiable operators.
Appl. Math. Comput., 2006