Hiroaki Taniguchi

Orcid: 0000-0002-2307-7639

According to our database1, Hiroaki Taniguchi authored at least 25 papers between 2002 and 2023.

Collaborative distances:
  • Dijkstra number2 of six.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2023
D-property for APN functions from $\mathbb {F}_{2}^{n}$ to $\mathbb {F}_{2}^{n+1}$.
Cryptogr. Commun., May, 2023

2021
Distance regular graphs arising from dimensional dual hyperovals.
Finite Fields Their Appl., 2021

2019
On some quadratic APN functions.
Des. Codes Cryptogr., 2019

A variation of the dual hyperoval S<sub>c</sub> using presemifields.
Des. Codes Cryptogr., 2019

2018
Bilinear dual hyperovals from binary commutative presemifields II.
Finite Fields Their Appl., 2018

2017
On some bilinear dual hyperovals.
Discret. Math., 2017

2016
Bilinear dual hyperovals from binary commutative presemifields.
Finite Fields Their Appl., 2016

2015
Some examples of simply connected dual hyperovals II.
Finite Fields Their Appl., 2015

2014
A unified description of four simply connected dimensional dual hyperovals.
Eur. J. Comb., 2014

New dimensional dual hyperovals, which are not quotients of the classical dual hyperovals.
Discret. Math., 2014

2013
Some examples of simply connected dual hyperovals.
Finite Fields Their Appl., 2013

Simple expressions of the Buratti-Del Fra dual hyperoval and the deformation of the Veronesean dual hyperoval.
Electron. Notes Discret. Math., 2013

2012
On the dual of the dual hyperoval from APN function f(x)=x<sup>3</sup>+Tr(x<sup>9</sup>).
Finite Fields Their Appl., 2012

A new construction of the d-dimensional Buratti-Del Fra dual hyperoval.
Eur. J. Comb., 2012

Quotients of the deformation of Veronesean dual hyperoval in PG(3d, 2).
Discret. Math., 2012

2010
On some d-dimensional dual hyperovals in PG(d(d+3)/2, 2).
Eur. J. Comb., 2010

On d-dimensional Buratti-Del Fra type dual hyperovals in PG(3d, 2).
Discret. Math., 2010

2009
On the duals of certain d-dimensional dual hyperovals in PG(2d+1, 2).
Finite Fields Their Appl., 2009

A new family of dual hyperovals in <i>I</i> with d>=3.
Discret. Math., 2009

2008
On Automorphisms of Some <i>d</i> -Dimensional Dual Hyperovals in <i>PG</i> ( <i>d</i> ( <i>d</i> + 3)/2, 2).
Graphs Comb., 2008

On some d-dimensional dual hyperovals in PG(2d, 2).
Finite Fields Their Appl., 2008

2007
On an Isomorphism Problem of Some Dual Hyperovals in <i>PG</i> (2 <i>d</i> + 1, <i>q</i> ) with <i>q</i> even.
Graphs Comb., 2007

2006
On d-dual hyperovals in PG(d(d+3)/2, 2).
Electron. Notes Discret. Math., 2006

2005
On a family of dual hyperovals over GF(<i>q</i>) with <i>q</i> even.
Eur. J. Comb., 2005

2002
d- Dimensional Dual Hyperovals in PG(d + n, 2) for d + 1 le leq n le leq 3d - 7.
Eur. J. Comb., 2002


  Loading...