Hengjia Wei
Orcid: 0000-0001-8136-1489
According to our database1,
Hengjia Wei
authored at least 38 papers
between 2013 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
IEEE Trans. Inf. Theory, August, 2024
Linear Network Coding for Robust Function Computation and Its Applications in Distributed Computing.
CoRR, 2024
CoRR, 2024
2023
IEEE Trans. Inf. Theory, February, 2023
Proceedings of the IEEE Information Theory Workshop, 2023
2022
IEEE Trans. Inf. Theory, 2022
2021
IEEE Trans. Inf. Theory, 2021
IEEE Trans. Inf. Theory, 2021
2020
IEEE Trans. Inf. Theory, 2020
IEEE Trans. Inf. Theory, 2020
Proceedings of the IEEE International Symposium on Information Theory, 2020
2019
Binary Robust Positioning Patterns with Low Redundancy and Efficient Locating Algorithms.
Proceedings of the Thirtieth Annual ACM-SIAM Symposium on Discrete Algorithms, 2019
2018
IEEE Trans. Inf. Theory, 2018
A strengthened inequality of Alon-Babai-Suzuki's conjecture on set systems with restricted intersections modulo p.
Discret. Math., 2018
2017
Discret. Math., 2017
Generic constructions for partitioned difference families with applications: a unified combinatorial approach.
Des. Codes Cryptogr., 2017
Proceedings of the 2017 IEEE International Symposium on Information Theory, 2017
Proceedings of the 2017 IEEE International Symposium on Information Theory, 2017
2016
IEEE Trans. Inf. Theory, 2016
2015
Discret. Math., 2015
Group divisible designs with block size four and group type g<sup>u</sup>m<sup>1</sup>.
Des. Codes Cryptogr., 2015
Des. Codes Cryptogr., 2015
Des. Codes Cryptogr., 2015
2014
Group divisible designs with block sizes from K<sub>l(3)</sub> and Kirkman frames of type h<sup>u</sup>m<sup>l</sup>.
Discret. Math., 2014
Kirkman frames having hole type $$h^{u} m^{1}$$ for $$h \equiv 0 {\, \, \mathrm{mod}\, 12}\, $$.
Des. Codes Cryptogr., 2014
2013
Group divisible designs with block size four and group type <i>g</i><sup><i>u</i></sup><i>m</i><sup>1</sup>gum1 for more small <i>g</i>g.
Discret. Math., 2013