Hendrik Speleers
Orcid: 0000-0003-4110-3308
According to our database1,
Hendrik Speleers
authored at least 57 papers
between 2006 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
A local simplex spline basis for <i>C</i><sup>3</sup> quartic splines on arbitrary triangulations.
Appl. Math. Comput., February, 2024
Comput. Aided Geom. Des., 2024
2023
Comput. Aided Geom. Des., June, 2023
On the matrices in B-spline collocation methods for Riesz fractional equations and their spectral properties.
Numer. Linear Algebra Appl., January, 2023
2022
ACM Trans. Math. Softw., 2022
Neural Networks, 2022
Ritz-type projectors with boundary interpolation properties and explicit spline error estimates.
Numerische Mathematik, 2022
Found. Comput. Math., 2022
2021
SIAM J. Matrix Anal. Appl., 2021
Super-smooth cubic Powell-Sabin splines on three-directional triangulations: B-spline representation and subdivision.
J. Comput. Appl. Math., 2021
Application of optimal spline subspaces for the removal of spurious outliers in isogeometric discretizations.
CoRR, 2021
A General Class of C1 Smooth Rational Splines: Application to Construction of Exact Ellipses and Ellipsoids.
Comput. Aided Des., 2021
2020
A Tchebycheffian Extension of Multidegree B-Splines: Algorithmic Computation and Properties.
SIAM J. Numer. Anal., 2020
Explicit error estimates for spline approximation of arbitrary smoothness in isogeometric analysis.
Numerische Mathematik, 2020
Numer. Linear Algebra Appl., 2020
A general class of C<sup>1</sup> smooth rational splines: Application to construction of exact ellipses and ellipsoids.
CoRR, 2020
Adaptive refinement with locally linearly independent LR B-splines: Theory and applications.
CoRR, 2020
A Tchebycheffian extension of multi-degree B-splines: Algorithmic computation and properties.
CoRR, 2020
Comput. Aided Geom. Des., 2020
2019
An immersed-isogeometric model: Application to linear elasticity and implementation with THBox-splines.
J. Comput. Appl. Math., 2019
Tchebycheffian spline spaces over planar T-meshes: Dimension bounds and dimension instabilities.
J. Comput. Appl. Math., 2019
2018
Are the eigenvalues of the B-spline isogeometric analysis approximation of -Δu = λu known in almost closed form?
Numer. Linear Algebra Appl., 2018
Comput. Aided Geom. Des., 2018
2017
SIAM J. Numer. Anal., 2017
Spectral analysis of matrices in Galerkin methods based on generalized B-splines with high smoothness.
Numerische Mathematik, 2017
Math. Comput., 2017
Comput. Aided Geom. Des., 2017
Comput. Aided Des., 2017
Adv. Comput. Math., 2017
2016
Spectral analysis and spectral symbol of matrices in isogeometric collocation methods.
Math. Comput., 2016
Comput. Aided Geom. Des., 2016
Generalized spline spaces over T-meshes: Dimension formula and locally refined generalized B-splines.
Appl. Math. Comput., 2016
2015
Optimizing domain parameterization in isogeometric analysis based on Powell-Sabin splines.
J. Comput. Appl. Math., 2015
Comput. Vis. Sci., 2015
Comput. Math. Appl., 2015
Comput. Aided Geom. Des., 2015
Appl. Math. Comput., 2015
2014
Numerische Mathematik, 2014
Adv. Comput. Math., 2014
2013
Comput. Aided Geom. Des., 2013
2012
Comput. Aided Geom. Des., 2012
Proceedings of the Mathematical Methods for Curves and Surfaces, 2012
2011
J. Comput. Appl. Math., 2011
2010
Comput. Aided Geom. Des., 2010
2009
2008
Proceedings of the Mathematical Methods for Curves and Surfaces, 2008
2007
2006