Heiko Gimperlein

Orcid: 0000-0003-3145-3021

According to our database1, Heiko Gimperlein authored at least 20 papers between 2011 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Space-time boundary elements for frictional contact in elastodynamics.
CoRR, 2024

Space-time stochastic Galerkin boundary elements for acoustic scattering problems.
CoRR, 2024

2023
Space-time enriched finite elements for elastodynamic wave propagation.
Eng. Comput., December, 2023

Higher-order time domain boundary elements for elastodynamics: graded meshes and hp versions.
Numerische Mathematik, June, 2023

Coupling of Finite and Boundary Elements for Singularly Nonlinear Transmission and Contact Problems.
Comput. Methods Appl. Math., April, 2023

Time domain boundary elements for elastodynamic contact.
CoRR, 2023

2022
Efficient quantitative assessment of robot swarms: coverage and targeting Lévy strategies.
CoRR, 2022

Error Estimates for FE-BE Coupling of Scattering of Waves in the Time Domain.
Comput. Methods Appl. Math., 2022

2021
Optimal operator preconditioning for pseudodifferential boundary problems.
Numerische Mathematik, 2021

2020
Metaplex Networks: Influence of the Exo-Endo Structure of Complex Systems on Diffusion.
SIAM Rev., 2020

Interacting Particles with Lévy Strategies: Limits of Transport Equations for Swarm Robotic Systems.
SIAM J. Appl. Math., 2020

A residual a posteriori error estimate for the time-domain boundary element method.
Numerische Mathematik, 2020

A time-dependent FEM-BEM coupling method for fluid-structure interaction in 3d.
CoRR, 2020

2018
Fractional Patlak-Keller-Segel Equations for Chemotactic Superdiffusion.
SIAM J. Appl. Math., 2018

Boundary elements with mesh refinements for the wave equation.
Numerische Mathematik, 2018

Swarming of interacting robots with Lévy strategies: a macroscopic description.
CoRR, 2018

2017
A Deterministic Optimal Design Problem for the Heat Equation.
SIAM J. Control. Optim., 2017

Stabilized mixed <i>hp</i>-BEM for frictional contact problems in linear elasticity.
Numerische Mathematik, 2017

2014
A Nash-Hörmander iteration and boundary elements for the Molodensky problem.
Numerische Mathematik, 2014

2011
Adaptive FE-BE coupling for strongly nonlinear transmission problems with Coulomb friction.
Numerische Mathematik, 2011


  Loading...