Hartmut Prautzsch

Affiliations:
  • Karlsruhe Institute of Technology, Germany


According to our database1, Hartmut Prautzsch authored at least 44 papers between 1984 and 2022.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2022
Obituary.
Comput. Aided Geom. Des., 2022

2019
Mixed honeycomb pushing refinement.
Comput. Aided Geom. Des., 2019

2018
In memoriam Wolfgang Boehm.
Comput. Aided Geom. Des., 2018

2014
General triangular midpoint subdivision.
Comput. Aided Geom. Des., 2014

2012
General Midpoint Subdivision
CoRR, 2012

2011
Analyzing midpoint subdivision.
Comput. Aided Geom. Des., 2011

2010
Be ye transformed by the renewing of your mind.
Comput. Aided Des., 2010

2007
Shadow metamorphosis.
Computing, 2007

2006
Parametrizations for triangular <i>G</i><sup><i>k</i></sup> spline surfaces of low degree.
ACM Trans. Graph., 2006

Structured Light Based Reconstruction under Local Spatial Coherence Assumption.
Proceedings of the 3rd International Symposium on 3D Data Processing, 2006

2002
Fan Clouds - An Alternative to Meshes.
Proceedings of the Geometry, 2002

Box Splines.
Proceedings of the Handbook of Computer Aided Geometric Design, 2002

Geometric Fundamentals.
Proceedings of the Handbook of Computer Aided Geometric Design, 2002

2001
Local Versus Global Triangulations.
Proceedings of the 22nd Annual Conference of the European Association for Computer Graphics, 2001

2000
A G<sup>1</sup> and a G<sup>2</sup> subdivision Scheme for triangular Nets.
Int. J. Shape Model., 2000

1999
Preface.
Comput. Aided Geom. Des., 1999

A geometric criterion for the convexity of Powell-Sabin interpolants and its multivariate generalization.
Comput. Aided Geom. Des., 1999

Quadric splines.
Comput. Aided Geom. Des., 1999

Degree estimates for <i>C</i><sup>k</sup>-piecewise polynomial subdivision surfaces.
Adv. Comput. Math., 1999

1998
Smoothness of subdivision surfaces at extraordinary points.
Adv. Comput. Math., 1998

Improved Triangular Subdivision Schemes.
Proceedings of the Computer Graphics International Conference, 1998

1997
Circle and sphere as rational splines.
Neural Parallel Sci. Comput., 1997

Freeform splines.
Comput. Aided Geom. Des., 1997

A geometric look at corner cutting.
Comput. Aided Geom. Des., 1997

1996
Arbitrarily high degree elevation of Bézier representations.
Comput. Aided Geom. Des., 1996

A G<sup>2</sup>-Subdivision Algorithm.
Proceedings of the Geometric Modelling, Dagstuhl, 1996

Multivariate Splines with Convex B-Patch Control Nets are Convex.
Proceedings of the Advanced Course on FAIRSHAPE, 1996

1994
A fast algorithm to raise the degree of spline curves : Computer aided geometric design 8 (4) (October 1991) 253-265.
Comput. Aided Geom. Des., 1994

On Degen's conjecture.
Comput. Aided Geom. Des., 1994

Convergence of subdivision and degree elevation.
Adv. Comput. Math., 1994

Geometric concepts for geometric design.
A K Peters, ISBN: 978-1-56881-004-1, 1994

1993
Numerical methods.
Vieweg, ISBN: 978-3-528-06350-4, 1993

1992
Is there a geometric variation diminishing property for B-spline or Bézier surfaces?
Comput. Aided Geom. Des., 1992

Approximate C<sup>r-</sup> Blending with Tensor Product Polynomials.
Proceedings of the Geometric Modelling, Dagstuhl, 1992

1991
A fast algorithm to raise the degree of spline curves.
Comput. Aided Geom. Des., 1991

1989
A round trip to B-splines via de Casteljau.
ACM Trans. Graph., 1989

Curve and Surface Fitting: An Introduction (Peter Lancaster and Kestutis Šalkauskas).
SIAM Rev., 1989

1987
Computing curves invariant under halving.
Comput. Aided Geom. Des., 1987

Computing surfaces invariant under subdivision.
Comput. Aided Geom. Des., 1987

1985
Letter to the editor.
Comput. Aided Geom. Des., 1985

Generalized subdivision and convergence.
Comput. Aided Geom. Des., 1985

1984
Unterteilungsalgorithmen für multivariate Splines, ein geometrischer Zugang.
PhD thesis, 1984

Degree elevation of B-spline curves.
Comput. Aided Geom. Des., 1984

A short proof of the Oslo algorithm.
Comput. Aided Geom. Des., 1984


  Loading...