Hai Q. Dinh
Orcid: 0000-0002-6487-8803Affiliations:
- Ton Duc Thang University, Institute for Computational Science, Division of Computational Mathematics and Engineering, Ho Chi Minh City, Vietnam
- Kent State University, Department of Mathematical Sciences, OH, USA
According to our database1,
Hai Q. Dinh
authored at least 112 papers
between 2004 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
2005
2010
2015
2020
0
5
10
15
20
10
12
9
14
20
12
11
4
2
3
3
1
2
1
1
1
1
3
1
1
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
J. Appl. Math. Comput., October, 2024
ℤ<sub>4</sub>ℤ<sub>4</sub>ℤ<sub>4</sub>-additive cyclic codes are asymptotically good.
Appl. Algebra Eng. Commun. Comput., July, 2024
Maximum distance separable repeated-root constacyclic codes over $\mathbb {F}_{2^m}+u\mathbb {F}_{2^m}$ with respect to the Lee distance.
Appl. Algebra Eng. Commun. Comput., July, 2024
Appl. Algebra Eng. Commun. Comput., May, 2024
Finite Fields Their Appl., 2024
Representation and matrix-product structure of Type-1 constacyclic codes over $ \mathbb{F}_{p^m}[u]/\langle u^e\rangle $.
Adv. Math. Commun., 2024
Symbol-pair distance of some repeated-root constacyclic codes of length p<sup>s</sup> over the Galois ring ${{\, \mathrm{GR}\, }}(p^a, m)$.
Appl. Algebra Eng. Commun. Comput., 2024
2023
On Hamming distance distributions of repeated-root constacyclic codes of length 3<i>p</i><sup><i>s</i></sup> over Fpm+uFpm.
Discret. Math., December, 2023
On symbol-pair distances of repeated-root constacyclic codes of length 2p<sup>s</sup> over ${\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}$ and MDS symbol-pair codes.
Appl. Algebra Eng. Commun. Comput., November, 2023
Quantum MDS and synchronizable codes from cyclic codes of length 5p<sup>s</sup> over 픽<sub>p<sup>m</sup></sub>.
Appl. Algebra Eng. Commun. Comput., November, 2023
Self-dual and LCD double circulant and double negacirculant codes over a family of finite rings $ \mathbb {F}_{q}[v_{1}, v_{2},\dots ,v_{t}]$.
Cryptogr. Commun., May, 2023
MDS symbol-pair repeated-root constacylic codes of prime power lengths over $$\mathbb {F}_{q}+ u\mathbb {F}_{q} + u^{2}\mathbb {F}_{q} $$.
J. Appl. Math. Comput., February, 2023
$${\mathbb {F}}_{2}[u]{\mathbb {F}}_{2}[u] $$-additive cyclic codes are asymptotically good.
J. Appl. Math. Comput., February, 2023
Optimal constructions of quantum and synchronizable codes from repeated-root cyclic codes of length 3p<sup>s</sup>.
Quantum Inf. Process., 2023
On a class of skew constacyclic codes over mixed alphabets and applications in constructing optimal and quantum codes.
Cryptogr. Commun., 2023
On Symbol-Pair Distance of a Class of Constacyclic Codes of Length 3ps over Fpm+uFpm.
Axioms, 2023
Self-Dual Double Circulant, Self-Dual Double Negacirculant and LCD Double Negacirculant Codes Over the Ring F<sub>q</sub>[u,v]/2 - u, v<sup>2</sup>-v, uv-vu>.
IEEE Access, 2023
On Symbol-Triple Distance of a Class of Constacyclic Codes of Length 3p<sup>s</sup> Over F<sub>p<sup>m</sup></sub> + uF<sub>p<sup>m</sup></sub>.
IEEE Access, 2023
On the symbol-pair distance of some classes of repeated-root constacyclic codes over Galois ring.
Appl. Algebra Eng. Commun. Comput., 2023
2022
J. Appl. Math. Comput., December, 2022
Lee distance distribution of repeated-root constacyclic codes over $$\hbox {GR}\left( 2^e,m\right) $$ and related MDS codes.
J. Appl. Math. Comput., December, 2022
Constacyclic codes over $${\pmb {\mathbb {F}}}_{q^2}[u]/\langle u^2-w^2 \rangle $$ and their application in quantum code construction.
J. Appl. Math. Comput., December, 2022
RT distances and Hamming distances of constacyclic codes of length $$8p^s$$ over $${\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}$$.
Comput. Appl. Math., June, 2022
Self-dual constacyclic codes of length $$2^s$$ over the ring $$\mathbb {F}_{2^m}[u,v]/\langle u^2, v^2, uv-vu \rangle $$.
J. Appl. Math. Comput., February, 2022
Cryptogr. Commun., 2022
Analyzing the Causality and Dependence between Exchange Rate and Real Estate Prices in Boom-and-Bust Markets: Quantile Causality and DCC Copula GARCH Approaches.
Axioms, 2022
Constacyclic codes of length 8p<sup>s</sup> over 픽<sub>p<sup>m</sup></sub> + u픽<sub>p<sup>m</sup></sub>.
Adv. Math. Commun., 2022
On Hamming Distance Distributions of Repeated-Root Cyclic Codes of Length 5p<sup>s</sup> Over F<sub>p</sub> <sup>m</sup> + uF<sub>p</sub> <sup>m</sup>.
IEEE Access, 2022
2021
J. Appl. Math. Comput., October, 2021
On Hamming and b-symbol distance distributions of repeated-root constacyclic codes of length $$4p^s$$ over $${\pmb {\mathbb {F}}}_{p^m}+u {\pmb {\mathbb {F}}}_{p^m}$$.
J. Appl. Math. Comput., June, 2021
Constacyclic codes over mixed alphabets and their applications in constructing new quantum codes.
Quantum Inf. Process., 2021
Quantum MDS and synchronizable codes from cyclic and negacyclic codes of length 4p<sup>s</sup> over ${\mathbb {F}}_{p^m}$.
Quantum Inf. Process., 2021
Lee Distance of (4z - 1)-Constacyclic Codes of Length 2<sup>s</sup> Over the Galois Ring GR(2<sup>a</sup>, m).
IEEE Commun. Lett., 2021
Hamming distances of constacyclic codes of length 3<i>p</i><sup><i>s</i></sup> and optimal codes with respect to the Griesmer and Singleton bounds.
Finite Fields Their Appl., 2021
Discret. Math., 2021
Discret. Math., 2021
An explicit expression for Euclidean self-dual cyclic codes over F2m+uF2m of length 2s.
Discret. Math., 2021
Lee distance of cyclic and (1 + <i>uγ</i>)-constacyclic codes of length 2<sup><i>s</i></sup> over F2m+uF2m.
Discret. Math., 2021
An explicit representation and enumeration for negacyclic codes of length 2<sup>kn</sup> over ℤ<sub>4+uℤ<sub>4</sub></sub>.
Adv. Math. Commun., 2021
Some Classes of New Quantum MDS and Synchronizable Codes Constructed From Repeated-Root Cyclic Codes of Length 6p<sup>s</sup>.
IEEE Access, 2021
Hamming Distance of Constacyclic Codes of Length p<sup>s</sup> Over F<sub>p<sup>m</sup></sub>+uF<sub>p<sup>m</sup></sub>+u²F<sub>p<sup>m</sup></sub>.
IEEE Access, 2021
2020
MDS Symbol-Pair Cyclic Codes of Length 2p<sup>s</sup> over 𝔽<sub>p<sup>m</sup></sub>.
IEEE Trans. Inf. Theory, 2020
IEEE Commun. Lett., 2020
Construction and enumeration for self-dual cyclic codes of even length over F2m+uF2m.
Finite Fields Their Appl., 2020
Discret. Math., 2020
Discret. Math., 2020
Discret. Math., 2020
Discret. Math., 2020
Quantum codes from skew constacyclic codes over the ring Fq[u, v]∕〈u2-1, v2-1, uv-vu〉.
Discret. Math., 2020
Adv. Math. Commun., 2020
IEEE Access, 2020
A Study of F<sub>q</sub>R-Cyclic Codes and Their Applications in Constructing Quantum Codes.
IEEE Access, 2020
Constacyclic Codes of Length 3p<sup>s</sup> Over F<sub>p</sub><sup>m</sup> + uF<sub>p</sub><sup>m</sup> and Their Application in Various Distance Distributions.
IEEE Access, 2020
Quantum MDS and Synchronizable Codes From Cyclic and Negacyclic Codes of Length 2p<sup>s</sup> Over F<sub>p<sup>m</sup></sub>.
IEEE Access, 2020
b-Symbol Distance of Constacylic Codes of Length p<sup>s</sup> Over F<sub>p</sub><sup>m</sup> + uF<sub>p</sub><sup>m</sup>.
IEEE Access, 2020
On the Structure of Cyclic Codes Over 𝔽<sub>q</sub>RS and Applications in Quantum and LCD Codes Constructions.
IEEE Access, 2020
Quantum Codes Obtained From Constacyclic Codes Over a Family of Finite Rings F<sub>p</sub>[u₁, u₂, ..., u<sub>s</sub>].
IEEE Access, 2020
Explicit Representation and Enumeration of Repeated-Root (δ + αu²)-Constacyclic Codes Over F₂<sup>m</sup>[u]/‹u<sup>2λ</sup>›.
IEEE Access, 2020
Hamming distance of repeated-root constacyclic codes of length 2p<sup>s</sup> over ${\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}$.
Appl. Algebra Eng. Commun. Comput., 2020
2019
Construction of cyclic DNA codes over the ring Z4[u]/〈u2-1〉 based on the deletion distance.
Theor. Comput. Sci., 2019
Finite Fields Their Appl., 2019
Discret. Math., 2019
Discret. Math., 2019
Discret. Math., 2019
An explicit representation and enumeration for self-dual cyclic codes over F2m+uF2m of length 2s.
Discret. Math., 2019
Discret. Math., 2019
Construction and enumeration for self-dual cyclic codes of even length over F<sub>2<sup>m</sup></sub> + uF<sub>2<sup>m</sup></sub>.
CoRR, 2019
An efficient method to construct self-dual cyclic codes of length p<sup>s</sup> over F<sub>p<sup>m</sup></sub>+uF<sub>p<sup>m</sup></sub>.
CoRR, 2019
Explicit representation for a class of Type 2 constacyclic codes over the ring F<sub>2<sup>2</sup></sub>[u]/〈u<sup>2λ</sup>〉 with even length.
CoRR, 2019
MDS Symbol-Pair Repeated-Root Constacylic Codes of Prime Power Lengths Over 𝔽<sub>p<sup>m</sup></sub> + u𝔽<sub>p<sup>m</sup></sub>.
IEEE Access, 2019
2018
On the Symbol-Pair Distance of Repeated-Root Constacyclic Codes of Prime Power Lengths.
IEEE Trans. Inf. Theory, 2018
On Constacyclic Codes Over ℤ<sub>4</sub>[v] / 〈v<sup>2</sup>-v〉 and Their Gray Images.
IEEE Commun. Lett., 2018
Hamming and Symbol-Pair Distances of Repeated-Root Constacyclic Codes of Prime Power Lengths Over 𝔽<sub>p<sup>m</sup></sub>+u𝔽<sub>p<sup>m</sup></sub>.
IEEE Commun. Lett., 2018
Cyclic DNA codes over the ring 𝔽<sub>2</sub>+u𝔽<sub>2</sub>+v𝔽<sub>2</sub>+uv𝔽<sub>2</sub>+v<sup>2</sup>𝔽<sub>2</sub>+uv<sup>2</sup>𝔽<sub>2</sub>.
Des. Codes Cryptogr., 2018
An explicit representation and enumeration for self-dual cyclic codes over F<sub>2<sup>m</sup></sub>+uF<sub>2<sup>m</sup></sub> of length 2<sup>s</sup>.
CoRR, 2018
A class of repeated-root constacyclic codes over 𝔽<sub>p<sup>m</sup></sub>[u]/〈u<sup>e</sup>〉 of Type 2.
CoRR, 2018
Constacyclic codes of length np<sup>s</sup> over 𝔽<sub>p<sup>m</sup></sub>+u𝔽<sub>p<sup>m</sup></sub>.
Adv. Math. Commun., 2018
2017
Finite Fields Their Appl., 2017
Finite Fields Their Appl., 2017
On structure and distances of some classes of repeated-root constacyclic codes over Galois rings.
Finite Fields Their Appl., 2017
On constacyclic codes of length 4p<sup>s</sup> over F<sub>p<sup>m</sup></sub>+uF<sub>p<sup>m</sup></sub>.
Discret. Math., 2017
2016
Constacyclic codes of length 2p<sup>s</sup> over F<sub>p<sup>m</sup></sub>+uF<sub>p<sup>m</sup></sub>.
Finite Fields Their Appl., 2016
Discret. Math., 2016
2015
Negacyclic codes of length 2p<sup>2</sup> over 𝔽<sub>p<sup>m</sup></sub> + u𝔽<sub>p<sup>m</sup></sub>.
Finite Fields Their Appl., 2015
Finite Fields Their Appl., 2015
Proceedings of the Seventh International Conference on Digital Image Processing, 2015
2014
Discret. Appl. Math., 2014
Proceedings of the Data Compression Conference, 2014
2013
Structure of repeated-root constacyclic codes of length 3<i>p</i><sup><i>s</i></sup> and their duals.
Discret. Math., 2013
2012
Adv. Math. Commun., 2012
2009
IEEE Trans. Inf. Theory, 2009
2008
On the linear ordering of some classes of negacyclic and cyclic codes and their distance distributions.
Finite Fields Their Appl., 2008
2007
Complete Distances of All Negacyclic Codes of Length 2<sup>s</sup> Over BBZ<sub>2<sup>a</sup></sub>.
IEEE Trans. Inf. Theory, 2007
2005
IEEE Trans. Inf. Theory, 2005
2004
Appl. Algebra Eng. Commun. Comput., 2004