H. M. El-Owaidy

Affiliations:
  • Al-Azhar University, Egypt


According to our database1, H. M. El-Owaidy authored at least 18 papers between 1999 and 2009.

Collaborative distances:
  • Dijkstra number2 of six.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2009
On perturbation of the Lotka-Volterra model.
Appl. Math. Lett., 2009

2008
Erratum to "On the periodic solutions for an nth order difference equations" [Appl. Math. Comput. 135(2003) 383-390].
Appl. Math. Comput., 2008

2005
The dynamics of the recursive sequence <i>x<sub>n+1</sub> = (alpha x<sub>n-1</sub>) / (beta + gamma x<sub>n-2</sub><sup>p</sup>)</i>.
Appl. Math. Lett., 2005

2004
Global asymptotic behavior of a chemostat model with delayed response in growth.
Appl. Math. Comput., 2004

Switching effect of predation on global large size prey species exhibiting group defence.
Appl. Math. Comput., 2004

On asymptotic behaviour of the difference equation x<sub>n+1</sub>=α+(x<sub>n-k</sub>/x<sub>n</sub>).
Appl. Math. Comput., 2004

Global attractivity of the recursive sequence x<sub>n+1</sub>=(α-βx<sub>n-1</sub>)/(γ+x<sub>n</sub>).
Appl. Math. Comput., 2004

2003
The necessary and sufficient conditions of existence of periodic solutions of nonautonomous difference equations.
Appl. Math. Comput., 2003

On the global attractivity of systems of nonlinear difference equations.
Appl. Math. Comput., 2003

Linearized oscillation for non-linear systems of delay differential equations.
Appl. Math. Comput., 2003

Global stability for three-species Lotka-Volterra systems with delay.
Appl. Math. Comput., 2003

On the recursive sequences x<sub>n+1</sub>=-αx<sub>n-1</sub>/β±x<sub>n</sub>.
Appl. Math. Comput., 2003

2002
On the periodic solutions for an nth-order difference equations.
Appl. Math. Comput., 2002

A mathematical model of bilingualism.
Appl. Math. Comput., 2002

2001
Mathematical analysis of a food-web model.
Appl. Math. Comput., 2001

2000
On the recursive sequence X<sub>n+1</sub>=A/x<sub>n</sub><sup>p</sup>+B/x<sub>n-1</sub><sup>q</sup>+C/x<sub>n-2</sub><sup>s</sup>.
Appl. Math. Comput., 2000

A note on the periodic cycle of X<sub>n+2</sub>=(1+X<sub>n+1</sub>)/(X<sub>n</sub>).
Appl. Math. Comput., 2000

1999
On some new integral inequalities of Growall-Bellman type.
Appl. Math. Comput., 1999


  Loading...