Gonzalo Rivera

Orcid: 0000-0002-6449-6506

According to our database1, Gonzalo Rivera authored at least 23 papers between 2017 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
A Mixed finite element method for the velocity-pseudostress formulation of the Oseen eigenvalue problem.
CoRR, 2024

A virtual element method for a convective Brinkman-Forchheimer problem coupled with a heat equation.
CoRR, 2024

2023
A Virtual Element Method for the Elasticity Spectral Problem Allowing for Small Edges.
J. Sci. Comput., December, 2023

Correction: A posteriori virtual element method for the acoustic vibration problem.
Adv. Comput. Math., April, 2023

A posteriori virtual element method for the acoustic vibration problem.
Adv. Comput. Math., February, 2023

Error estimates for a vorticity-based velocity-stress formulation of the Stokes eigenvalue problem.
J. Comput. Appl. Math., 2023

Error analysis for a non-conforming virtual element discretization of the acoustic problem.
CoRR, 2023

Finite Element Analysis of the Oseen eigenvalue problem.
CoRR, 2023

VEM allowing small edges for the acoustic problem.
CoRR, 2023

A priori and a posteriori error analysis for a VEM discretization of the convection-diffusion eigenvalue problem.
CoRR, 2023

VEM discretization allowing small edges for the reaction-convection-diffusion equation: source and spectral problems.
CoRR, 2023

2022
Mixed Methods for the Velocity-Pressure-Pseudostress Formulation of the Stokes Eigenvalue Problem.
SIAM J. Sci. Comput., 2022

A Posteriori Analysis for a Mixed FEM Discretization of the Linear Elasticity Spectral Problem.
J. Sci. Comput., 2022

VEM approximation for the Stokes eigenvalue problem: a priori and a posteriori error analysis.
CoRR, 2022

A virtual element method for the elasticity problem allowing small edges.
CoRR, 2022

Finite element analysis for the Navier-Lamé eigenvalue problem.
CoRR, 2022

2021
A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges.
J. Sci. Comput., 2021

Displacement-pseudostress formulation for the linear elasticity spectral problem: a priori analysis.
CoRR, 2021

2020
A priori error analysis for a mixed VEM discretization of the spectral problem for the Laplacian operator.
CoRR, 2020

A virtual element approximation for the pseudostress formulation of the Stokes eigenvalue problem.
CoRR, 2020

2019
Virtual elements for a shear-deflection formulation of Reissner-Mindlin plates.
Math. Comput., 2019

2017
A virtual element method for the acoustic vibration problem.
Numerische Mathematik, 2017

A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem.
Comput. Math. Appl., 2017


  Loading...