Gonzalo Rivera
Orcid: 0000-0002-6449-6506
According to our database1,
Gonzalo Rivera
authored at least 23 papers
between 2017 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
A Mixed finite element method for the velocity-pseudostress formulation of the Oseen eigenvalue problem.
CoRR, 2024
A virtual element method for a convective Brinkman-Forchheimer problem coupled with a heat equation.
CoRR, 2024
2023
A Virtual Element Method for the Elasticity Spectral Problem Allowing for Small Edges.
J. Sci. Comput., December, 2023
Adv. Comput. Math., April, 2023
Adv. Comput. Math., February, 2023
Error estimates for a vorticity-based velocity-stress formulation of the Stokes eigenvalue problem.
J. Comput. Appl. Math., 2023
Error analysis for a non-conforming virtual element discretization of the acoustic problem.
CoRR, 2023
A priori and a posteriori error analysis for a VEM discretization of the convection-diffusion eigenvalue problem.
CoRR, 2023
VEM discretization allowing small edges for the reaction-convection-diffusion equation: source and spectral problems.
CoRR, 2023
2022
Mixed Methods for the Velocity-Pressure-Pseudostress Formulation of the Stokes Eigenvalue Problem.
SIAM J. Sci. Comput., 2022
A Posteriori Analysis for a Mixed FEM Discretization of the Linear Elasticity Spectral Problem.
J. Sci. Comput., 2022
VEM approximation for the Stokes eigenvalue problem: a priori and a posteriori error analysis.
CoRR, 2022
2021
J. Sci. Comput., 2021
Displacement-pseudostress formulation for the linear elasticity spectral problem: a priori analysis.
CoRR, 2021
2020
A priori error analysis for a mixed VEM discretization of the spectral problem for the Laplacian operator.
CoRR, 2020
A virtual element approximation for the pseudostress formulation of the Stokes eigenvalue problem.
CoRR, 2020
2019
Math. Comput., 2019
2017
Numerische Mathematik, 2017
A posteriori error estimates for a Virtual Element Method for the Steklov eigenvalue problem.
Comput. Math. Appl., 2017