Gilda Ferreira

Orcid: 0000-0003-1447-9764

Affiliations:
  • Universidade Aberta (UAb), Lisbon, Portugal
  • University of Lisbon, Department of Mathematics, Portugal


According to our database1, Gilda Ferreira authored at least 22 papers between 2006 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Herbrandized modified realizability.
Arch. Math. Log., July, 2024

How to avoid the commuting conversions of IPC.
CoRR, 2024

2022
Typability and Type Inference in Atomic Polymorphism.
Log. Methods Comput. Sci., 2022

2021
The Russell-Prawitz embedding and the atomization of universal instantiation.
Log. J. IGPL, 2021

2020
A Refined Interpretation of Intuitionistic Logic by Means of Atomic Polymorphism.
Stud Logica, 2020

2019
The computational content of atomic polymorphism.
Log. J. IGPL, 2019

2018
Atomic polymorphism and the existence property.
Ann. Pure Appl. Log., 2018

2017
Rasiowa-Harrop Disjunction Property.
Stud Logica, 2017

η-conversions of IPC implemented in atomic F.
Log. J. IGPL, 2017

A herbrandized functional interpretation of classical first-order logic.
Arch. Math. Log., 2017

2016
Instantiation overflow.
Reports Math. Log., 2016

2015
The Faithfulness of Fat: A Proof-Theoretic Proof.
Stud Logica, 2015

2013
Atomic polymorphism.
J. Symb. Log., 2013

Interpretability in Robinson's Q.
Bull. Symb. Log., 2013

2012
On bounded functional interpretations.
Ann. Pure Appl. Log., 2012

2011
Functional Interpretations of Intuitionistic Linear Logic
Log. Methods Comput. Sci., 2011

2010
Confined modified realizability.
Math. Log. Q., 2010

On Various Negative Translations
Proceedings of the Proceedings Third International Workshop on Classical Logic and Computation, 2010

2009
Commuting Conversions vs. the Standard Conversions of the "Good" Connectives.
Stud Logica, 2009

2008
The Riemann Integral in Weak Systems of Analysis.
J. Univers. Comput. Sci., 2008

Harrington's conservation theorem redone.
Arch. Math. Log., 2008

2006
Counting as integration in feasible analysis.
Math. Log. Q., 2006


  Loading...