Gi-Sang Cheon

Orcid: 0000-0002-8679-8257

Affiliations:
  • Sungkyunkwan University, Suwon, Republic of Korea


According to our database1, Gi-Sang Cheon authored at least 25 papers between 1999 and 2022.

Collaborative distances:

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2022
Structural properties of Toeplitz graphs.
Discret. Math., 2022

Enumeration of bipartite non-crossing geometric graphs.
Discret. Appl. Math., 2022

2020
Counting independent sets in Riordan graphs.
Discret. Math., 2020

2019
Word-representability of Toeplitz graphs.
Discret. Appl. Math., 2019

2014
An application of Riordan arrays to the transient analysis of M/M/1 queues.
Appl. Math. Comput., 2014

2013
Generalized Bessel numbers and some combinatorial settings.
Discret. Math., 2013

2012
Combinatorics of Riordan arrays with identical A and Z sequences.
Discret. Math., 2012

r-Whitney numbers of Dowling lattices.
Discret. Math., 2012

The uplift principle for ordered trees.
Appl. Math. Lett., 2012

2011
The hitting time subgroup, Lukasiewicz paths and Faber polynomials.
Eur. J. Comb., 2011

Rational combinations for the sums involving inverse binomial coefficients.
Appl. Math. Comput., 2011

2010
On the conjecture for certain Laplacian integral spectrum of graphs.
J. Graph Theory, 2010

The Fine numbers refined.
Eur. J. Comb., 2010

2009
A generalization of Lucas polynomial sequence.
Discret. Appl. Math., 2009

Riordan group involutions and the Delta-sequence.
Discret. Appl. Math., 2009

2008
Protected points in ordered trees.
Appl. Math. Lett., 2008

2007
An interpretation of the Dittert conjecture in terms of semi-matchings.
Discret. Math., 2007

Several polynomials associated with the harmonic numbers.
Discret. Appl. Math., 2007

2005
Combinatorial and hypergeometric identities via the Legendre polynomials--A computational approach.
Appl. Math. Comput., 2005

2004
Extended symmetric Pascal matrices via hypergeometric functions.
Appl. Math. Comput., 2004

2003
Root Polynomials to and From Permanents.
Discret. Math., 2003

A connection between a generalized Pascal matrix and the hypergeometric function.
Appl. Math. Lett., 2003

A note on the Bernoulli and Euler polynomials.
Appl. Math. Lett., 2003

2000
Sparse orthogonal matrices and the Haar wavelet.
Discret. Appl. Math., 2000

1999
How Sparse Can a Matrix with Orthogonal Rows Be?
J. Comb. Theory A, 1999


  Loading...