Georgios E. Zouraris

Orcid: 0000-0003-0234-0175

According to our database1, Georgios E. Zouraris authored at least 14 papers between 2001 and 2023.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2023
Implicit-Explicit Finite Difference Approximations of a Semilinear Heat Equation with Logarithmic Nonlinearity.
Comput. Methods Appl. Math., July, 2023

Error Estimation of the Relaxation Finite Difference Scheme for the Nonlinear Schrödinger Equation.
SIAM J. Numer. Anal., February, 2023

2022
Improved Efficiency of Multilevel Monte Carlo for Stochastic PDE through Strong Pairwise Coupling.
J. Sci. Comput., 2022

2020
A Relaxation/Finite Difference discretization of a 2D Semilinear Heat Equation over a rectangular domain.
CoRR, 2020

2018
Crank-Nicolson Finite Element Approximations for a Linear Stochastic Fourth Order Equation with Additive Space-Time White Noise.
SIAM J. Numer. Anal., 2018

A Linear Implicit Finite Difference Discretization of the Schrödinger-Hirota Equation.
J. Sci. Comput., 2018

2015
Crank-Nicolson finite element discretizations for a two-dimensional linear Schrödinger-type equation posed in a noncylindrical domain.
Math. Comput., 2015

2009
Galerkin Methods for Parabolic and Schrödinger Equations with Dynamical Boundary Conditions and Applications to Underwater Acoustics.
SIAM J. Numer. Anal., 2009

2008
Adaptive Weak Approximation of Diffusions with Jumps.
SIAM J. Numer. Anal., 2008

2004
On the Construction and Analysis of High Order Locally Conservative Finite Volume-Type Methods for One-Dimensional Elliptic Problems.
SIAM J. Numer. Anal., 2004

Galerkin Finite Element Approximations of Stochastic Elliptic Partial Differential Equations.
SIAM J. Numer. Anal., 2004

2003
A variational principle for adaptive approximation of ordinary differential equations.
Numerische Mathematik, 2003

Convergence rates for adaptive approximation of ordinary differential equations.
Numerische Mathematik, 2003

2001
Finite Difference Schemes for the "Parabolic" Equation in a Variable Depth Environment with a Rigid Bottom Boundary Condition.
SIAM J. Numer. Anal., 2001


  Loading...