Geneviève Dusson
Orcid: 0000-0002-7160-6064
According to our database1,
Geneviève Dusson
authored at least 23 papers
between 2016 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2024
A posteriori error estimates for Schrödinger operators discretized with linear combinations of atomic orbitals.
CoRR, 2024
Fully guaranteed and computable error bounds on the energy for periodic Kohn-Sham equations with convex density functionals.
CoRR, 2024
2023
An overview of <i>a posteriori</i> error estimation and post-processing methods for nonlinear eigenvalue problems.
J. Comput. Phys., October, 2023
Nonlinear reduced basis using mixture Wasserstein barycenters: application to an eigenvalue problem inspired from quantum chemistry.
CoRR, 2023
Reduced basis method for non-symmetric eigenvalue problems: application to the multigroup neutron diffusion equations.
CoRR, 2023
An overview of a posteriori error estimation and post-processingmethods for nonlinear eigenvalue problems.
CoRR, 2023
2022
Practical Error Bounds for Properties in Plane-Wave Electronic Structure Calculations.
SIAM J. Sci. Comput., October, 2022
Analysis of the Feshbach-Schur method for the Fourier spectral discretizations of Schrödinger operators.
Math. Comput., September, 2022
Multiscale Model. Simul., 2022
J. Comput. Phys., 2022
2021
Mach. Learn. Sci. Technol., 2021
2020
Guaranteed a posteriori bounds for eigenvalues and eigenvectors: Multiplicities and clusters.
Math. Comput., 2020
Regularised atomic body-ordered permutation-invariant polynomials for the construction of interatomic potentials.
Mach. Learn. Sci. Technol., 2020
Analysis of the Feshbach-Schur method for the planewave discretizations of Schr{ö}dinger operators.
CoRR, 2020
2019
2018
Guaranteed and robust a posteriori bounds for Laplace eigenvalues and eigenvectors: a unified framework.
Numerische Mathematik, 2018
2017
Guaranteed and Robust a Posteriori Bounds for Laplace Eigenvalues and Eigenvectors: Conforming Approximations.
SIAM J. Numer. Anal., 2017
2016
A perturbation-method-based post-processing for the planewave discretization of Kohn-Sham models.
J. Comput. Phys., 2016