Gelasio Salazar
Orcid: 0000-0002-8458-3930
According to our database1,
Gelasio Salazar
authored at least 77 papers
between 1998 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2024
Ars Math. Contemp., 2024
2023
Proceedings of the XII Latin-American Algorithms, Graphs and Optimization Symposium, 2023
2022
Ars Math. Contemp., 2022
2021
2020
Discret. Comput. Geom., 2020
2019
2018
J. Graph Theory, 2018
2017
Drawings of K<sub>n</sub> with the same rotation scheme are the same up to Reidemeister moves (Gioan's Theorem).
Australas. J Comb., 2017
2016
Preface: LAGOS'13: Seventh Latin-American Algorithms, Graphs, and Optimization Symposium, Playa del Carmen, México - 2013.
Discret. Appl. Math., 2016
2015
Proceedings of the Algorithms and Computation - 26th International Symposium, 2015
2014
Discret. Comput. Geom., 2014
2013
SIAM J. Discret. Math., 2013
Electron. Notes Discret. Math., 2013
Discret. Math. Theor. Comput. Sci., 2013
2012
J. Comb. Theory B, 2012
Inf. Process. Lett., 2012
Discret. Comput. Geom., 2012
2011
Electron. Notes Discret. Math., 2011
Electron. Notes Discret. Math., 2011
On $(\le k)$-edges, crossings, and halving lines of geometric drawings of K<sub>n</sub>
CoRR, 2011
Proceedings of the Computational Geometry - XIV Spanish Meeting on Computational Geometry, 2011
2010
Discret. Appl. Math., 2010
2008
An extended lower bound on the number of (k)-edges to generalized configurations of points and the pseudolinear crossing number of K<sub>n</sub>.
J. Comb. Theory A, 2008
Electron. Notes Discret. Math., 2008
The maximum number of halving lines and the rectilinear crossing number of K<sub>n</sub> for n.
Electron. Notes Discret. Math., 2008
2007
Large harmonic sets of noncrossing edges for n randomly labeled vertices in convex position.
Random Struct. Algorithms, 2007
Electron. Notes Discret. Math., 2007
The convex hull of every optimal pseudolinear drawing of K<sub>n</sub> is a triangle.
Australas. J Comb., 2007
Proceedings of the Algorithms and Computation, 18th International Symposium, 2007
2006
Improved Bounds for the Crossing Numbers of <i>K<sub>m, n</sub></i> and <i>K<sub>n</sub></i>.
SIAM J. Discret. Math., 2006
J. Graph Theory, 2006
On the length of longest alternating paths for multicoloured point sets in convex position.
Discret. Math., 2006
Discret. Comput. Geom., 2006
Proceedings of the Graph Drawing, 14th International Symposium, 2006
2005
On the Intersection Number of Matchings and Minimum Weight Perfect Matchings of Multicolored Point Sets.
Graphs Comb., 2005
Discret. Math., 2005
2004
The crossing number of <i>C<sub>m</sub></i> × <i>C<sub>n</sub></i> is as conjectured for <i>n</i> >= <i>m</i>(<i>m</i> + 1).
J. Graph Theory, 2004
An Improved Bound for the Crossing Number of C <sub><i>m</i></sub>C <sub><i>n</i></sub>: a Self-Contained Proof Using Mostly Combinatorial Arguments.
Graphs Comb., 2004
Morelia Test: Improving the Efficiency of the Gabriel Test and Face Routing in Ad-Hoc Networks.
Proceedings of the Structural Information and Communication Complexity, 2004
Improved Bounds for the Number of (<=k)-Sets, Convex Quadrilaterals, and the Rectilinear Crossing Number of K<sub>n</sub>.
Proceedings of the Graph Drawing, 12th International Symposium, 2004
2003
Discret. Math., 2003
Discret. Math., 2003
Proceedings of the Combinatorial Geometry and Graph Theory, 2003
2002
2001
Bounding the crossing number of a graph in terms of the crossing number of a minor with small maximum degree.
J. Graph Theory, 2001
J. Comb. Theory B, 2001
2000
J. Graph Theory, 2000
1999
J. Comb. Theory B, 1999
1998
J. Graph Theory, 1998