Florian Kofler

Orcid: 0000-0003-0642-7884

According to our database1, Florian Kofler authored at least 47 papers between 2019 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
A Dempster-Shafer Approach to Trustworthy AI With Application to Fetal Brain MRI Segmentation.
IEEE Trans. Pattern Anal. Mach. Intell., May, 2024

<i>Where is VALDO?</i> VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021.
Medical Image Anal., January, 2024

Improving the Precision of CNNs for Magnetic Resonance Spectral Modeling.
CoRR, 2024

ISLES'24: Improving final infarct prediction in ischemic stroke using multimodal imaging and clinical data.
CoRR, 2024

BraTS-PEDs: Results of the Multi-Consortium International Pediatric Brain Tumor Segmentation Challenge 2023.
CoRR, 2024

QUBIQ: Uncertainty Quantification for Biomedical Image Segmentation Challenge.
CoRR, 2024

Brain Tumor Segmentation (BraTS) Challenge 2024: Meningioma Radiotherapy Planning Automated Segmentation.
CoRR, 2024

The 2024 Brain Tumor Segmentation (BraTS) Challenge: Glioma Segmentation on Post-treatment MRI.
CoRR, 2024

Analysis of the BraTS 2023 Intracranial Meningioma Segmentation Challenge.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
CoRR, 2024

The Brain Tumor Segmentation in Pediatrics (BraTS-PEDs) Challenge: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs).
CoRR, 2024

A Robust Ensemble Algorithm for Ischemic Stroke Lesion Segmentation: Generalizability and Clinical Utility Beyond the ISLES Challenge.
CoRR, 2024

A Learnable Prior Improves Inverse Tumor Growth Modeling.
CoRR, 2024

SPINEPS - Automatic Whole Spine Segmentation of T2-weighted MR images using a Two-Phase Approach to Multi-class Semantic and Instance Segmentation.
CoRR, 2024


2023
Learn-Morph-Infer: A new way of solving the inverse problem for brain tumor modeling.
Medical Image Anal., 2023

The Liver Tumor Segmentation Benchmark (LiTS).
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Medical Image Anal., 2023

Benchmarking the CoW with the TopCoW Challenge: Topology-Aware Anatomical Segmentation of the Circle of Willis for CTA and MRA.
CoRR, 2023

Panoptica - instance-wise evaluation of 3D semantic and instance segmentation maps.
CoRR, 2023

Framing image registration as a landmark detection problem for better representation of clinical relevance.
CoRR, 2023

The Brain Tumor Segmentation (BraTS) Challenge 2023: Glioma Segmentation in Sub-Saharan Africa Patient Population (BraTS-Africa).
CoRR, 2023

The Brain Tumor Segmentation (BraTS) Challenge 2023: Focus on Pediatrics (CBTN-CONNECT-DIPGR-ASNR-MICCAI BraTS-PEDs).
CoRR, 2023

The Brain Tumor Segmentation (BraTS) Challenge 2023: Brain MR Image Synthesis for Tumor Segmentation (BraSyn).
CoRR, 2023

The Brain Tumor Segmentation (BraTS) Challenge 2023: Local Synthesis of Healthy Brain Tissue via Inpainting.
CoRR, 2023

The ASNR-MICCAI Brain Tumor Segmentation (BraTS) Challenge 2023: Intracranial Meningioma.
CoRR, 2023

Primitive Simultaneous Optimization of Similarity Metrics for Image Registration.
CoRR, 2023

Understanding metric-related pitfalls in image analysis validation.
CoRR, 2023

Vesselformer: Towards Complete 3D Vessel Graph Generation from Images.
Proceedings of the Medical Imaging with Deep Learning, 2023


blob loss: Instance Imbalance Aware Loss Functions for Semantic Segmentation.
Proceedings of the Information Processing in Medical Imaging, 2023

Why is the Winner the Best?
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2023

2022
Geometry-Aware Neural Solver for Fast Bayesian Calibration of Brain Tumor Models.
IEEE Trans. Medical Imaging, 2022

Where is VALDO? VAscular Lesions Detection and segmentatiOn challenge at MICCAI 2021.
CoRR, 2022

ISLES 2022: A multi-center magnetic resonance imaging stroke lesion segmentation dataset.
CoRR, 2022

Casting the inverse problem as a database query. The case of personalized tumor growth modeling.
CoRR, 2022

A for-loop is all you need. For solving the inverse problem in the case of personalized tumor growth modeling.
Proceedings of the Machine Learning for Health, 2022

Deep Quality Estimation: Creating Surrogate Models for Human Quality Ratings.
Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 2022

2021
FedCostWAvg: A new averaging for better Federated Learning.
CoRR, 2021

Semi-Implicit Neural Solver for Time-dependent Partial Differential Equations.
CoRR, 2021

Are we using appropriate segmentation metrics? Identifying correlates of human expert perception for CNN training beyond rolling the DICE coefficient.
CoRR, 2021

FedCostWAvg: A New Averaging for Better Federated Learning.
Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 2021

2020
Real-time Bayesian personalization via a learnable brain tumor growth model.
CoRR, 2020

Red-GAN: Attacking class imbalance via conditioned generation. Yet another medical imaging perspective.
Proceedings of the International Conference on Medical Imaging with Deep Learning, 2020

Reliable Saliency Maps for Weakly-Supervised Localization of Disease Patterns.
Proceedings of the Interpretable and Annotation-Efficient Learning for Medical Image Computing, 2020

A Distance-Based Loss for Smooth and Continuous Skin Layer Segmentation in Optoacoustic Images.
Proceedings of the Medical Image Computing and Computer Assisted Intervention - MICCAI 2020, 2020

2019
DiamondGAN: Unified Multi-modal Generative Adversarial Networks for MRI Sequences Synthesis.
Proceedings of the Medical Image Computing and Computer Assisted Intervention - MICCAI 2019, 2019

Neural Parameters Estimation for Brain Tumor Growth Modeling.
Proceedings of the Medical Image Computing and Computer Assisted Intervention - MICCAI 2019, 2019

A Baseline for Predicting Glioblastoma Patient Survival Time with Classical Statistical Models and Primitive Features Ignoring Image Information.
Proceedings of the Brainlesion: Glioma, Multiple Sclerosis, Stroke and Traumatic Brain Injuries, 2019


  Loading...