Fengming Dong
Orcid: 0000-0002-8510-2262Affiliations:
- Nanyang Technological University, National Institute of Education, Singapore
According to our database1,
Fengming Dong
authored at least 81 papers
between 1993 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
Comparing list-color functions of uniform hypergraphs with their chromatic polynomials (II).
Discret. Math., January, 2024
The absolute values of the perfect matching derangement graph's eigenvalues almost follow the lexicographic order of partitions.
Discret. Math., 2024
WorldScientific, ISBN: 9789811284830, 2024
2023
ZDP(n) ${Z}_{DP}(n)$ is bounded above by n2-(n+3)∕2 ${n}^{2}-(n+3)\unicode{x02215}2$.
J. Graph Theory, September, 2023
An improved lower bound of <i>P</i>(<i>G</i>,<i>L</i>)-<i>P</i>(<i>G</i>,<i>k</i>) for <i>k</i>-assignments <i>L</i>.
J. Comb. Theory B, July, 2023
J. Comb. Theory A, 2023
2022
SIAM J. Discret. Math., December, 2022
Counting spanning trees in a complete bipartite graph which contain a given spanning forest.
J. Graph Theory, 2022
Discret. Math., 2022
2021
Proving a conjecture on chromatic polynomials by counting the number of acyclic orientations.
J. Graph Theory, 2021
2020
J. Graph Theory, 2020
Electron. J. Graph Theory Appl., 2020
Spanning trees in complete bipartite graphs and resistance distance in nearly complete bipartite graphs.
Discret. Appl. Math., 2020
2019
2018
Even Subgraph Expansions for the Flow Polynomial of Planar Graphs with Maximum Degree at Most 4.
Electron. J. Comb., 2018
2017
Expression for the Number of Spanning Trees of Line Graphs of Arbitrary Connected Graphs.
J. Graph Theory, 2017
Properties of chromatic polynomials of hypergraphs not held for chromatic polynomials of graphs.
Eur. J. Comb., 2017
2015
2014
Nowhere-zero 3-flows in Tensor Products of Graphs.
Ars Comb., 2014
2013
2012
The 3-connectivity of a graph and the multiplicity of zero "2" of its chromatic polynomial.
J. Graph Theory, 2012
A characterisation of cycle-disjoint graphs with unique minimum weakly connected dominating set.
Australas. J Comb., 2012
2011
SIAM J. Discret. Math., 2011
2010
On Zero-Free Intervals in (1, 2) of Chromatic Polynomials of Some Families of Graphs.
SIAM J. Discret. Math., 2010
Electron. J. Comb., 2010
Australas. J Comb., 2010
2009
On graphs determining links with maximal number of components via medial construction.
Discret. Appl. Math., 2009
2008
Discret. Math., 2008
Discret. Math., 2008
Discret. Math., 2008
2007
2006
2005
2004
Discret. Math., 2004
The largest non-integer real zero of chromatic polynomials of graphs with fixed order.
Discret. Math., 2004
2003
2002
Discret. Math., 2002
2001
Sharp bounds for the number of 3-independent partitions and the chromaticity of bipartite graphs.
J. Graph Theory, 2001
Graphs Comb., 2001
2000
Discret. Math., 2000
Discret. Math., 2000
1999
Discret. Math., 1999
1998
Discret. Math., 1998
1997
Discret. Math., 1997
On the structure and chromaticity of graphs in which any two colour classes induce a tree.
Discret. Math., 1997
1996
1995
Discret. Math., 1995
1993