Felipe Lepe
Orcid: 0000-0002-7929-9572
According to our database1,
Felipe Lepe
authored at least 38 papers
between 2014 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
J. Comput. Appl. Math., May, 2024
A Mixed finite element method for the velocity-pseudostress formulation of the Oseen eigenvalue problem.
CoRR, 2024
A virtual element method for a convective Brinkman-Forchheimer problem coupled with a heat equation.
CoRR, 2024
CoRR, 2024
CoRR, 2024
Interior penalty discontinuous Galerkin methods for the nearly incompressible elasticity eigenvalue problem with heterogeneous media.
CoRR, 2024
2023
A Virtual Element Method for the Elasticity Spectral Problem Allowing for Small Edges.
J. Sci. Comput., December, 2023
Interior penalty discontinuous Galerkin methods for the velocity-pressure formulation of the Stokes spectral problem.
Adv. Comput. Math., August, 2023
Adv. Comput. Math., April, 2023
J. Optim. Theory Appl., February, 2023
Adv. Comput. Math., February, 2023
Error estimates for a vorticity-based velocity-stress formulation of the Stokes eigenvalue problem.
J. Comput. Appl. Math., 2023
Error analysis for a non-conforming virtual element discretization of the acoustic problem.
CoRR, 2023
Finite element analysis of the nearly incompressible linear elasticity eigenvalue problem with variable coefficients.
CoRR, 2023
CoRR, 2023
A priori and a posteriori error analysis for a VEM discretization of the convection-diffusion eigenvalue problem.
CoRR, 2023
VEM discretization allowing small edges for the reaction-convection-diffusion equation: source and spectral problems.
CoRR, 2023
2022
Mixed Methods for the Velocity-Pressure-Pseudostress Formulation of the Stokes Eigenvalue Problem.
SIAM J. Sci. Comput., 2022
A Posteriori Analysis for a Mixed FEM Discretization of the Linear Elasticity Spectral Problem.
J. Sci. Comput., 2022
VEM approximation for the Stokes eigenvalue problem: a priori and a posteriori error analysis.
CoRR, 2022
2021
Error Estimates for FEM Discretizations of the Navier-Stokes Equations with Dirac Measures.
J. Sci. Comput., 2021
J. Sci. Comput., 2021
Displacement-pseudostress formulation for the linear elasticity spectral problem: a priori analysis.
CoRR, 2021
A posteriori error estimates in <i>W</i><sup>1, <i>p</i></sup> × L<sup><i>p</i></sup> spaces for the Stokes system with Dirac measures.
Comput. Math. Appl., 2021
2020
Symmetric and Nonsymmetric Discontinuous Galerkin Methods for a Pseudostress Formulation of the Stokes Spectral Problem.
SIAM J. Sci. Comput., 2020
CoRR, 2020
A priori error analysis for a mixed VEM discretization of the spectral problem for the Laplacian operator.
CoRR, 2020
A virtual element approximation for the pseudostress formulation of the Stokes eigenvalue problem.
CoRR, 2020
2019
Numerische Mathematik, 2019
A posteriori error estimates in W<sup>1, p</sup> × L<sup>p</sup> spaces for the Stokes system with Dirac measures.
CoRR, 2019
2016
Finite Element Analysis of a Bending Moment Formulation for the Vibration Problem of a Non-homogeneous Timoshenko Beam.
J. Sci. Comput., 2016
2014
Locking-free finite element method for a bending moment formulation of Timoshenko beams.
Comput. Math. Appl., 2014