Felipe Lepe

Orcid: 0000-0002-7929-9572

According to our database1, Felipe Lepe authored at least 38 papers between 2014 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Discontinuous Galerkin methods for the acoustic vibration problem.
J. Comput. Appl. Math., May, 2024

A Mixed finite element method for the velocity-pseudostress formulation of the Oseen eigenvalue problem.
CoRR, 2024

A virtual element method for a convective Brinkman-Forchheimer problem coupled with a heat equation.
CoRR, 2024

A Conforming virtual element approximation for the Oseen eigenvalue problem.
CoRR, 2024

Error estimates for a bilinear optimal control problem of Maxwell's equations.
CoRR, 2024

Interior penalty discontinuous Galerkin methods for the nearly incompressible elasticity eigenvalue problem with heterogeneous media.
CoRR, 2024

2023
A Virtual Element Method for the Elasticity Spectral Problem Allowing for Small Edges.
J. Sci. Comput., December, 2023

Interior penalty discontinuous Galerkin methods for the velocity-pressure formulation of the Stokes spectral problem.
Adv. Comput. Math., August, 2023

Correction: A posteriori virtual element method for the acoustic vibration problem.
Adv. Comput. Math., April, 2023

An Optimal Control Problem for the Navier-Stokes Equations with Point Sources.
J. Optim. Theory Appl., February, 2023

A posteriori virtual element method for the acoustic vibration problem.
Adv. Comput. Math., February, 2023

Error estimates for a vorticity-based velocity-stress formulation of the Stokes eigenvalue problem.
J. Comput. Appl. Math., 2023

Error analysis for a non-conforming virtual element discretization of the acoustic problem.
CoRR, 2023

Finite element analysis of the nearly incompressible linear elasticity eigenvalue problem with variable coefficients.
CoRR, 2023

Finite Element Analysis of the Oseen eigenvalue problem.
CoRR, 2023

A posteriori analysis for a mixed formulation of the Stokes spectral problem.
CoRR, 2023

VEM allowing small edges for the acoustic problem.
CoRR, 2023

A priori and a posteriori error analysis for a VEM discretization of the convection-diffusion eigenvalue problem.
CoRR, 2023

VEM discretization allowing small edges for the reaction-convection-diffusion equation: source and spectral problems.
CoRR, 2023

2022
Mixed Methods for the Velocity-Pressure-Pseudostress Formulation of the Stokes Eigenvalue Problem.
SIAM J. Sci. Comput., 2022

A Posteriori Analysis for a Mixed FEM Discretization of the Linear Elasticity Spectral Problem.
J. Sci. Comput., 2022

VEM approximation for the Stokes eigenvalue problem: a priori and a posteriori error analysis.
CoRR, 2022

A virtual element method for the elasticity problem allowing small edges.
CoRR, 2022

Finite element analysis for the Navier-Lamé eigenvalue problem.
CoRR, 2022

2021
Error Estimates for FEM Discretizations of the Navier-Stokes Equations with Dirac Measures.
J. Sci. Comput., 2021

A Virtual Element Method for the Steklov Eigenvalue Problem Allowing Small Edges.
J. Sci. Comput., 2021

Displacement-pseudostress formulation for the linear elasticity spectral problem: a priori analysis.
CoRR, 2021

Analysis of an abstract mixed formulation for viscoelastic problems.
CoRR, 2021

A posteriori error estimates in <i>W</i><sup>1, <i>p</i></sup> × L<sup><i>p</i></sup> spaces for the Stokes system with Dirac measures.
Comput. Math. Appl., 2021

2020
Symmetric and Nonsymmetric Discontinuous Galerkin Methods for a Pseudostress Formulation of the Stokes Spectral Problem.
SIAM J. Sci. Comput., 2020

A mixed parameter formulation with applications to linear viscoelasticity.
CoRR, 2020

A priori error analysis for a mixed VEM discretization of the spectral problem for the Laplacian operator.
CoRR, 2020

A virtual element approximation for the pseudostress formulation of the Stokes eigenvalue problem.
CoRR, 2020

2019
Mixed discontinuous Galerkin approximation of the elasticity eigenproblem.
Numerische Mathematik, 2019

Acoustic vibration problem for dissipative fluids.
Math. Comput., 2019

A posteriori error estimates in W<sup>1, p</sup> × L<sup>p</sup> spaces for the Stokes system with Dirac measures.
CoRR, 2019

2016
Finite Element Analysis of a Bending Moment Formulation for the Vibration Problem of a Non-homogeneous Timoshenko Beam.
J. Sci. Comput., 2016

2014
Locking-free finite element method for a bending moment formulation of Timoshenko beams.
Comput. Math. Appl., 2014


  Loading...