Fei Xu

Orcid: 0000-0002-0246-981X

Affiliations:
  • Beijing University of Technology, Beijing Institute for Scientific and Engineering Computing, China


According to our database1, Fei Xu authored at least 28 papers between 2016 and 2025.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2025
A novel multilevel finite element method for a generalized nonlinear Schrödinger equation.
J. Comput. Appl. Math., 2025

2024
Local and parallel multigrid method for semilinear Neumann problem with nonlinear boundary condition.
Numer. Algorithms, May, 2024

Improved Self-consistent Field Iteration for Kohn-Sham Density Functional Theory.
Multiscale Model. Simul., March, 2024

A Novel Domain Decomposition Method for Eigenvalue Problems.
J. Sci. Comput., January, 2024

Adaptive multigrid method for quantum eigenvalue problems.
J. Comput. Appl. Math., January, 2024

2023
Multigrid Method for Nonlinear Eigenvalue Problems Based on Newton Iteration.
J. Sci. Comput., 2023

On accelerating a multilevel correction adaptive finite element method for Kohn-Sham equation.
J. Comput. Phys., 2023

2022
Multilevel Local Defect-Correction Method for Nonsymmetric Eigenvalue Problems.
J. Sci. Comput., 2022

A Two-Grid Decoupled Algorithm for a Multi-Dimensional Darcy-Brinkman Fracture Model.
J. Sci. Comput., 2022

Convergence and optimality of adaptive multigrid method for multiple eigenvalue problems.
J. Comput. Appl. Math., 2022

An Efficient Adaptive Finite Element Method for Eigenvalue Problems.
CoRR, 2022

A multilevel Newton's method for the Steklov eigenvalue problem.
Adv. Comput. Math., 2022

2021
Multilevel correction adaptive finite element method for solving nonsymmetric eigenvalue problems.
Adv. Comput. Math., 2021

2020
A Parallel Augmented Subspace Method for Eigenvalue Problems.
SIAM J. Sci. Comput., 2020

A type of cascadic multigrid method for coupled semilinear elliptic equations.
Numer. Algorithms, 2020

A Cascadic Adaptive Finite Element Method for Nonlinear Eigenvalue Problems in Quantum Physics.
Multiscale Model. Simul., 2020

Local and Parallel Multigrid Method for Nonlinear Eigenvalue Problems.
J. Sci. Comput., 2020

Cascadic adaptive finite element method for nonlinear eigenvalue problem based on complementary approach.
J. Comput. Appl. Math., 2020

A novel domain decomposition framework for the ground state solution of Bose-Einstein condensates.
Comput. Math. Appl., 2020

Adaptive time-stepping algorithms for molecular beam epitaxy: Based on energy or roughness.
Appl. Math. Lett., 2020

A novel adaptive finite element method for the ground state solution of Bose-Einstein condensates.
Appl. Math. Comput., 2020

2019
A full multigrid method for the Steklov eigenvalue problem.
Int. J. Comput. Math., 2019

An Eigenwise Parallel Augmented Subspace Method for Eigenvalue Problems.
CoRR, 2019

An accurate a posteriori error estimator for semilinear Neumann problem and its applications.
Appl. Math. Comput., 2019

Effects of Numerical Integration on DLM/FD Method for Solving Interface Problems with Body-Unfitted Meshes.
Proceedings of the Computational Science - ICCS 2019, 2019

2018
A Multilevel Correction Type of Adaptive Finite Element Method for Eigenvalue Problems.
SIAM J. Sci. Comput., 2018

A multilevel correction adaptive finite element method for Kohn-Sham equation.
J. Comput. Phys., 2018

2016
A full multigrid method for eigenvalue problems.
J. Comput. Phys., 2016


  Loading...