Fei Xu
Orcid: 0000-0002-0246-981XAffiliations:
- Beijing University of Technology, Beijing Institute for Scientific and Engineering Computing, China
According to our database1,
Fei Xu
authored at least 28 papers
between 2016 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2025
A novel multilevel finite element method for a generalized nonlinear Schrödinger equation.
J. Comput. Appl. Math., 2025
2024
Local and parallel multigrid method for semilinear Neumann problem with nonlinear boundary condition.
Numer. Algorithms, May, 2024
Multiscale Model. Simul., March, 2024
J. Sci. Comput., January, 2024
J. Comput. Appl. Math., January, 2024
2023
J. Sci. Comput., 2023
On accelerating a multilevel correction adaptive finite element method for Kohn-Sham equation.
J. Comput. Phys., 2023
2022
J. Sci. Comput., 2022
A Two-Grid Decoupled Algorithm for a Multi-Dimensional Darcy-Brinkman Fracture Model.
J. Sci. Comput., 2022
Convergence and optimality of adaptive multigrid method for multiple eigenvalue problems.
J. Comput. Appl. Math., 2022
Adv. Comput. Math., 2022
2021
Multilevel correction adaptive finite element method for solving nonsymmetric eigenvalue problems.
Adv. Comput. Math., 2021
2020
SIAM J. Sci. Comput., 2020
Numer. Algorithms, 2020
A Cascadic Adaptive Finite Element Method for Nonlinear Eigenvalue Problems in Quantum Physics.
Multiscale Model. Simul., 2020
J. Sci. Comput., 2020
Cascadic adaptive finite element method for nonlinear eigenvalue problem based on complementary approach.
J. Comput. Appl. Math., 2020
A novel domain decomposition framework for the ground state solution of Bose-Einstein condensates.
Comput. Math. Appl., 2020
Adaptive time-stepping algorithms for molecular beam epitaxy: Based on energy or roughness.
Appl. Math. Lett., 2020
A novel adaptive finite element method for the ground state solution of Bose-Einstein condensates.
Appl. Math. Comput., 2020
2019
Int. J. Comput. Math., 2019
An accurate a posteriori error estimator for semilinear Neumann problem and its applications.
Appl. Math. Comput., 2019
Effects of Numerical Integration on DLM/FD Method for Solving Interface Problems with Body-Unfitted Meshes.
Proceedings of the Computational Science - ICCS 2019, 2019
2018
A Multilevel Correction Type of Adaptive Finite Element Method for Eigenvalue Problems.
SIAM J. Sci. Comput., 2018
J. Comput. Phys., 2018
2016