Fedor Ratnikov

According to our database1, Fedor Ratnikov authored at least 14 papers between 2003 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
Soft Margin Spectral Normalization for GANs.
Comput. Softw. Big Sci., December, 2024

2023
What Machine Learning Can Do for Focusing Aerogel Detectors.
CoRR, 2023

2022
A Comparison of CPU and GPU Implementations for the LHCb Experiment Run 3 Trigger.
, , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , ,
Comput. Softw. Big Sci., 2022

Energy reconstruction for large liquid scintillator detectors with machine learning techniques: aggregated features approach.
CoRR, 2022

2020
(1 + epsilon)-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets.
J. Mach. Learn. Res., 2020

Using Machine Learning to Speed Up and Improve Calorimeter R&D.
CoRR, 2020

Generative Adversarial Networks for LHCb Fast Simulation.
CoRR, 2020

Using machine learning to speed up new and upgrade detector studies: a calorimeter case.
CoRR, 2020

2019
$(1 + \varepsilon)$-class Classification: an Anomaly Detection Method for Highly Imbalanced or Incomplete Data Sets.
CoRR, 2019

Cherenkov Detectors Fast Simulation Using Neural Networks.
CoRR, 2019

2018
Generative Models for Fast Calorimeter Simulation.LHCb case.
CoRR, 2018

2017
Deep learning for inferring cause of data anomalies.
CoRR, 2017

Towards automation of data quality system for CERN CMS experiment.
CoRR, 2017

2003
Management of Grid Jobs and Information within SAMGrid
CoRR, 2003


  Loading...