Fanghui Ma
According to our database1,
Fanghui Ma
authored at least 16 papers
between 2017 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2024
Constructing and expressing Hermitian self-dual cyclic codes of length p<sup>s</sup> over ${\mathbb {F}}_{p^m}+u{\mathbb {F}}_{p^m}$.
Appl. Algebra Eng. Commun. Comput., May, 2024
Representation and matrix-product structure of Type-1 constacyclic codes over $ \mathbb{F}_{p^m}[u]/\langle u^e\rangle $.
Adv. Math. Commun., 2024
2023
Des. Codes Cryptogr., March, 2023
J. Appl. Math. Comput., February, 2023
2022
Maximal entanglement EAQECCs from cyclic and constacyclic codes over ${\mathbb {F}}_q+v_1{\mathbb {F}}_q+\cdots +v_{s-1}{\mathbb {F}}_q$.
Quantum Inf. Process., 2022
(x<sup>n-(a+bw), ξ</sup> , η )-skew constacyclic codes over $\mathbb {F}_{q}+w\mathbb {F}_{q}$ and their applications in quantum codes.
Quantum Inf. Process., 2022
Construction and enumeration of left dihedral codes satisfying certain duality properties.
Discret. Math., 2022
2021
Cryptogr. Commun., 2021
IEEE Access, 2021
2020
\({\mathbb {F}}_qR\) -linear skew constacyclic codes and their application of constructing quantum codes.
Quantum Inf. Process., 2020
Construction and enumeration for self-dual cyclic codes of even length over F2m+uF2m.
Finite Fields Their Appl., 2020
2019
Construction and enumeration for self-dual cyclic codes of even length over F<sub>2<sup>m</sup></sub> + uF<sub>2<sup>m</sup></sub>.
CoRR, 2019
New non-binary quantum codes from constacyclic codes over $ \mathbb{F}_q[u, v]/\langle u^{2}-1, v^{2}-v, uv-vu\rangle $.
Adv. Math. Commun., 2019
2018
Constacyclic codes over the ring (𝔽<sub>q</sub>+v𝔽<sub>q</sub>+v<sup>2</sup>𝔽<sub>q</sub>) and their applications of constructing new non-binary quantum codes.
Quantum Inf. Process., 2018
2017
Discret. Math. Algorithms Appl., 2017
Complete classification of (δ + αu<sup>2</sup>)-constacyclic codes over F<sub>2<sup>m</sup></sub> / < u<sup>4</sup> > of oddly even length.
Discret. Math., 2017