Erwan Faou
According to our database1,
Erwan Faou
authored at least 32 papers
between 2005 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
2006
2008
2010
2012
2014
2016
2018
2020
2022
2024
0
1
2
3
4
5
6
1
3
2
2
2
2
2
1
3
2
1
1
2
5
1
1
1
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2024
CoRR, 2024
2022
SIAM J. Math. Anal., 2022
2021
CoRR, 2021
CoRR, 2021
2019
Existence and Stability of Traveling Waves for Discrete Nonlinear Schrödinger Equations Over Long Times.
SIAM J. Math. Anal., 2019
Analysis of an Asymptotic Preserving Scheme for Stochastic Linear Kinetic Equations in the Diffusion Limit.
SIAM/ASA J. Uncertain. Quantification, 2019
2018
Uniformly accurate exponential-type integrators for Klein-Gordon equations with asymptotic convergence to the classical NLS splitting.
Math. Comput., 2018
Found. Comput. Math., 2018
2017
Numerische Mathematik, 2017
Asymptot. Anal., 2017
2016
An asymptotic preserving scheme for the relativistic Vlasov-Maxwell equations in the classical limit.
Comput. Phys. Commun., 2016
2015
2014
Asymptotic preserving schemes for the Klein-Gordon equation in the non-relativistic limit regime.
Numerische Mathematik, 2014
2013
Existence and stability of ground states for fully discrete approximations of the nonlinear Schrödinger equation.
Numerische Mathematik, 2013
2012
2011
Found. Comput. Math., 2011
2010
Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs. Part II. Abstract splitting.
Numerische Mathematik, 2010
Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs. Part I. Finite-dimensional discretization.
Numerische Mathematik, 2010
2009
SIAM J. Sci. Comput., 2009
SIAM J. Numer. Anal., 2009
SIAM J. Numer. Anal., 2009
Math. Comput., 2009
Analysis of splitting methods for reaction-diffusion problems using stochastic calculus.
Math. Comput., 2009
2007
Normal form and long time analysis of splitting schemes for the linear Schrödinger equation with small potential.
Numerische Mathematik, 2007
2006
An Algebraic Approach to Invariant Preserving Integators: The Case of Quadratic and Hamiltonian Invariants.
Numerische Mathematik, 2006
2005