Eric J. Beh

Orcid: 0000-0002-9051-9070

According to our database1, Eric J. Beh authored at least 20 papers between 2001 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Correspondence Analysis for Assessing Departures from Perfect Symmetry Using the Cressie-Read Family of Divergence Statistics.
Symmetry, July, 2024

2023
A practical approach to making use of uncertain species presence-only data in ecology: Reclassification, regularization methods and observer bias.
Ecol. Informatics, November, 2023

Three-Way Correspondence Analysis in R.
R J., June, 2023

2022
Features of the Polynomial Biplot for Ordered Contingency Tables.
J. Comput. Graph. Stat., January, 2022

Visualising Departures from Symmetry and Bowker's X2 Statistic.
Symmetry, 2022

Asymptotic Characteristics of the Non-Iterative Estimates of the Linear-by-Linear Association Parameter for Ordinal Log-Linear Models.
Comput., 2022

2020
Demand forecasting in supply chain: The impact of demand volatility in the presence of promotion.
Comput. Ind. Eng., 2020

Familywise decompositions of Pearson's chi-square statistic in the analysis of contingency tables.
Adv. Data Anal. Classif., 2020

2018
Correspondence analysis and the Freeman-Tukey statistic: A study of archaeological data.
Comput. Stat. Data Anal., 2018

2016
Variants of Simple Correspondence Analysis.
R J., 2016

2013
A reformulation of the aggregate association index using the odds ratio.
Comput. Stat. Data Anal., 2013

2010
The aggregate association index.
Comput. Stat. Data Anal., 2010

2009
Components of Pearson's Statistic for at Least Partially Ordered m-Way Contingency Tables.
Adv. Decis. Sci., 2009

Some Interpretative Tools for Non-Symmetrical Correspondence Analysis.
J. Classif., 2009

2008
Simple Correspondence Analysis of Nominal-Ordinal Contingency Tables.
Adv. Decis. Sci., 2008

2007
Non-symmetric correspondence analysis with ordinal variables using orthogonal polynomials.
Comput. Stat. Data Anal., 2007

2005
S-PLUS code for simple and multiple correspondence analysis.
Comput. Stat., 2005

2004
A non-iterative alternative to ordinal Log-Linear models.
Adv. Decis. Sci., 2004

S-PLUS code for ordinal correspondence analysis.
Comput. Stat., 2004

2001
Confidence circles for correspondence analysis using orthogonal polynomials.
Adv. Decis. Sci., 2001


  Loading...