E. J. Cheon

Orcid: 0000-0002-5942-7960

Affiliations:
  • Gyeongsang National University, Jinju, Republic of Korea


According to our database1, E. J. Cheon authored at least 13 papers between 2005 and 2025.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2025
On the minimum length of linear codes of dimension 5.
Discret. Math., 2025

2017
On a number of rational points on a plane curve of low degree.
Discret. Math., 2017

2015
On the minimum number of points covered by a set of lines in PG(2, q).
Des. Codes Cryptogr., 2015

2013
Three families of multiple blocking sets in Desarguesian projective planes of even order.
Des. Codes Cryptogr., 2013

2011
The non-existence of Griesmer codes with parameters close to codes of Belov type.
Des. Codes Cryptogr., 2011

The classification of (42, 6)<sub>8</sub> arcs.
Adv. Math. Commun., 2011

2009
A new extension theorem for 3-weight modulo <i>q</i> linear codes over <i>F</i><sub><i>q</i></sub>.
Des. Codes Cryptogr., 2009

A class of optimal linear codes of length one above the Griesmer bound.
Des. Codes Cryptogr., 2009

2008
Nonexistence of a [g<sub>q</sub>(5, d), 5, d]<sub>q</sub> code for 3q<sup>4</sup>-4q<sup>3</sup>-2q+1<=d<=3q<sup>4</sup>-4q<sup>3</sup>-q.
Discret. Math., 2008

2007
On the minimum length of some linear codes.
Des. Codes Cryptogr., 2007

On the upper bound of the minimum length of 5-dimensional linear codes.
Australas. J Comb., 2007

2005
On the Minimum Length of some Linear Codes of Dimension 5.
Des. Codes Cryptogr., 2005

Nonexistence of [<i>n</i>, 5, <i>d</i>]<sub><i>q</i></sub> Codes Attaining the Griesmer Bound for <i>q</i><sup>4</sup>-2<i>q</i><sup>2</sup>-2<i>q</i>+1 <= <i>d</i> <= <i>q</i><sup>4</sup>-2<i>q</i><sup>2</sup>-<i>q</i>.
Des. Codes Cryptogr., 2005


  Loading...