E. Capelas De Oliveira

According to our database1, E. Capelas De Oliveira authored at least 14 papers between 2018 and 2024.

Collaborative distances:
  • Dijkstra number2 of four.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
New discretization of ψ-Caputo fractional derivative and applications.
Math. Comput. Simul., 2024

2023
On the ε-regular mild solution for fractional abstract integro-differential equations.
Soft Comput., November, 2023

On the uniqueness of mild solutions to the time-fractional Navier-Stokes equations in $$L^{N} \left( \mathbb {R} ^{N}\right) ^{N}$$.
Comput. Appl. Math., February, 2023

2022
A system of Cauchy fractional differential equations and new properties of Mittag-Leffler functions with matrix argument.
J. Comput. Appl. Math., 2022

2021
A new approach to the validation of an ESR fractional model.
Comput. Appl. Math., 2021

Ulam-Hyers type stability for $$\psi $$-Hilfer fractional differential equations with impulses and delay.
Comput. Appl. Math., 2021

2020
The $$\psi $$-Hilfer fractional calculus of variable order and its applications.
Comput. Appl. Math., 2020

$$\psi $$-Hilfer pseudo-fractional operator: new results about fractional calculus.
Comput. Appl. Math., 2020

2019
A review of definitions of fractional derivatives and other operators.
J. Comput. Phys., 2019

Leibniz type rule: <i>ψ</i>-Hilfer fractional operator.
Commun. Nonlinear Sci. Numer. Simul., 2019

On the $$\Psi $$ Ψ -fractional integral and applications.
Comput. Appl. Math., 2019

Stability of ψ-Hilfer impulsive fractional differential equations.
Appl. Math. Lett., 2019

2018
On the <i>ψ</i>-Hilfer fractional derivative.
Commun. Nonlinear Sci. Numer. Simul., 2018

Ulam-Hyers stability of a nonlinear fractional Volterra integro-differential equation.
Appl. Math. Lett., 2018


  Loading...