Dumitru Mihalache

Orcid: 0000-0002-8605-176X

According to our database1, Dumitru Mihalache authored at least 13 papers between 2005 and 2025.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2025
Multiple solitons and breathers on periodic backgrounds in the complex modified Korteweg-de Vries equation.
Appl. Math. Lett., 2025

2023
The multiple double-pole solitons and multiple negaton-type solitons in the space-shifted nonlocal nonlinear Schrödinger equation.
Appl. Math. Lett., December, 2023

2022
Stabilization of Axisymmetric Airy Beams by Means of Diffraction and Nonlinearity Management in Two-Dimensional Fractional Nonlinear Schrödinger Equations.
Symmetry, 2022

Dynamics of general higher-order rogue waves in the two-component nonlinear Schrödinger equation coupled to the Boussinesq equation.
Commun. Nonlinear Sci. Numer. Simul., 2022

Dynamics of rogue lumps on a background of two-dimensional homoclinic orbits in the Fokas system.
Appl. Math. Lett., 2022

2021
Multiple-order line rogue wave solutions of extended Kadomtsev-Petviashvili equation.
Math. Comput. Simul., 2021

Rogue breathers and rogue lumps on a background of dark line solitons for the Maccari system.
Commun. Nonlinear Sci. Numer. Simul., 2021

Doubly localized rogue waves on a background of dark solitons for the Fokas system.
Appl. Math. Lett., 2021

2020
PT-symmetric nonlocal Davey-Stewartson I equation: General lump-soliton solutions on a background of periodic line waves.
Appl. Math. Lett., 2020

2019
Dynamics and interaction scenarios of localized wave structures in the Kadomtsev-Petviashvili-based system.
Appl. Math. Lett., 2019

2018
Rational and semi-rational solutions of the y-nonlocal Davey-Stewartson I equation.
Comput. Math. Appl., 2018

Semi-rational solutions for the (2+1)-dimensional nonlocal Fokas system.
Appl. Math. Lett., 2018

2005
Optical solitons in a few-cycle regime: Breakdown of slow-envelope approximation.
Math. Comput. Simul., 2005


  Loading...