Dragan Jukic

Orcid: 0000-0003-0215-3687

According to our database1, Dragan Jukic authored at least 16 papers between 1998 and 2021.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2021
An existence criterion for the nonlinear ℓ <sub>p</sub>-norm fitting problem.
Central Eur. J. Oper. Res., 2021

2020
A necessary and sufficient criterion for the existence of the global minima of a continuous lower bounded function on a noncompact set.
J. Comput. Appl. Math., 2020

2018
An elementary proof of the quadratic envelope characterization of zero-derivative points.
Optim. Lett., 2018

2014
A Simple Proof of the Existence of the Best Estimator in a Quasilinear Regression Model.
J. Optim. Theory Appl., 2014

2013
On parameter estimation in the bass model by nonlinear least squares fitting the adoption curve.
Int. J. Appl. Math. Comput. Sci., 2013

On nonlinear weighted least squares estimation of Bass diffusion model.
Appl. Math. Comput., 2013

2012
The L<sub>p</sub>-norm estimation of the parameters for the Jelinski-Moranda model in software reliability.
Int. J. Comput. Math., 2012

2011
Total least squares fitting Bass diffusion model.
Math. Comput. Model., 2011

2010
On nonlinear weighted errors-in-variables parameter estimation problem in the three-parameter Weibull model.
Appl. Math. Comput., 2010

2009
On the existence of the best discrete approximation in l<sub>p</sub> norm by reciprocals of real polynomials.
J. Approx. Theory, 2009

2008
On the existence of the nonlinear weighted least squares estimate for a three-parameter Weibull distribution.
Comput. Stat. Data Anal., 2008

2005
Least squares fitting Gaussian type curve.
Appl. Math. Comput., 2005

2004
A necessary and sufficient criteria for the existence of the least squares estimate for a 3-parametric exponential function.
Appl. Math. Comput., 2004

1999
Partial Linearization of One Class of the Nonlinear Total Least Squares Problem by Using the Inverse Model Function.
Computing, 1999

1998
Approximating surfaces by moving total least squares method.
Appl. Math. Comput., 1998

Discrete total l<sub>p</sub>-norm approximation problem for the exponential function.
Appl. Math. Comput., 1998


  Loading...