Dmitrii I. Koshelev
Orcid: 0000-0002-4796-8989
According to our database1,
Dmitrii I. Koshelev
authored at least 29 papers
between 2019 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2024
J. Comput. Virol. Hacking Tech., November, 2024
J. Cryptol., June, 2024
J. Cryptogr. Eng., April, 2024
IACR Cryptol. ePrint Arch., 2024
IACR Cryptol. ePrint Arch., 2024
Revisiting subgroup membership testing on pairing-friendly curves via the Tate pairing.
IACR Cryptol. ePrint Arch., 2024
2023
J. Cryptogr. Eng., April, 2023
Application of Mordell-Weil lattices with large kissing numbers to acceleration of multi-scalar multiplication on elliptic curves.
IACR Cryptol. ePrint Arch., 2023
Generation of two "independent" points on an elliptic curve of j-invariant ≠q 0, 1728.
IACR Cryptol. ePrint Arch., 2023
Batching Cipolla-Lehmer-Müller's square root algorithm with hashing to elliptic curves.
IACR Cryptol. ePrint Arch., 2023
Hashing to elliptic curves over highly 2-adic fields $\mathbb{F}_{\!q}$ with O(log(q)) operations in $\mathbb{F}_{\!q}$.
IACR Cryptol. ePrint Arch., 2023
2022
SIAM J. Appl. Algebra Geom., March, 2022
The most efficient indifferentiable hashing to elliptic curves of<i>j</i>-invariant 1728.
J. Math. Cryptol., 2022
Generation of "independent" points on elliptic curves by means of Mordell-Weil lattices.
IACR Cryptol. ePrint Arch., 2022
Indifferentiable hashing to ordinary elliptic ${\mathbb {F}}_{\!q}$-curves of j=0 with the cost of one exponentiation in ${\mathbb {F}}_{\!q}$.
Des. Codes Cryptogr., 2022
2021
IACR Cryptol. ePrint Arch., 2021
IACR Cryptol. ePrint Arch., 2021
How to hash onto 픾<sub>2</sub> and not to hash onto 픾<sub>1</sub> for pairing-friendly curves.
IACR Cryptol. ePrint Arch., 2021
IACR Cryptol. ePrint Arch., 2021
IACR Cryptol. ePrint Arch., 2021
Finite Fields Their Appl., 2021
2020
IEEE Trans. Inf. Theory, 2020
Hashing to elliptic curves y<sup>2</sup> = x<sup>3</sup> + b provided that b is a quadratic residue.
IACR Cryptol. ePrint Arch., 2020
IACR Cryptol. ePrint Arch., 2020
IACR Cryptol. ePrint Arch., 2020
2019
IACR Cryptol. ePrint Arch., 2019
A new elliptic curve point compression method based on $\mathbb{F}_{\!p}$-rationality of some generalized Kummer surfaces.
IACR Cryptol. ePrint Arch., 2019