Dianhua Wu
Orcid: 0000-0002-2966-0606Affiliations:
- Guangxi Normal University, Department of Mathematics, Guilin, China
According to our database1,
Dianhua Wu
authored at least 55 papers
between 2000 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
IEEE/ACM Trans. Netw., August, 2024
Balanced ($\mathbb{Z} _{2u}\times \mathbb{Z}_{38v}$, {3, 4, 5}, 1) difference packings and related codes.
Adv. Math. Commun., 2024
2023
Discret. Math., September, 2023
CoRR, 2023
2022
Constructions of balanced (<i>N</i>, <i>M</i>, {4, 5}, 1;2) Multilength Variable-Weight optical orthogonal codes.
Adv. Math. Commun., 2022
2021
Constructions and Applications of Perfect Difference Matrices and Perfect Difference Families.
CoRR, 2021
2019
Adv. Math. Commun., 2019
2018
IEEE Trans. Inf. Theory, 2018
2017
2016
Discret. Math., 2016
2015
Adv. Math. Commun., 2015
Proceedings of the Seventh International Workshop on Signal Design and its Applications in Communications, 2015
2014
2013
Some Infinite Classes of Optimal (v, {3, 4}, 1, Q)-OOCs with $${Q \in \{(\frac {1}{3}, \frac {2}{3}), (\frac {2}{3}, \frac{1}{3})\}}$$.
Graphs Comb., 2013
Australas. J Comb., 2013
Optimal two-dimensional variable-weight optical orthogonal codes via scarce mixed difference families.
Proceedings of the Sixth International Workshop on Signal Design and Its Applications in Communications, 2013
2012
IEEE Trans. Inf. Theory, 2012
New Infinite Classes of Optimal (υ, {<i>k</i>, 6}, 1, <i>Q</i>) Optical Orthogonal Codes via Quadratic Residues.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2012
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2012
New Classes of Optimal Variable-Weight Optical Orthogonal Codes with Hamming Weights 3 and 4.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2012
General Constructions for (υ, 4, 1) Optical Orthogonal Codes via Perfect Difference Families.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2012
The existence of doubly disjoint (mt+1, m, m-1) difference families.
Ars Comb., 2012
2011
IEEE Trans. Inf. Theory, 2011
IEEE Trans. Inf. Theory, 2011
Discret. Math., 2011
Proceedings of the Fifth International Workshop on Signal Design and its Applications in Communications, 2011
Proceedings of the Fifth International Workshop on Signal Design and its Applications in Communications, 2011
2010
IEEE Trans. Inf. Theory, 2010
New Classes of Optimal Variable-Weight Optical Orthogonal Codes Based on Cyclic Difference Families.
IEICE Trans. Fundam. Electron. Commun. Comput. Sci., 2010
Sci. China Inf. Sci., 2010
Proceedings of the Sequences and Their Applications - SETA 2010, 2010
2009
Constructions of optimal quaternary constant weight codes via group divisible designs.
Discret. Math., 2009
Proceedings of the IEEE International Symposium on Information Theory, 2009
2008
J. Math. Cryptol., 2008
Discret. Math., 2008
Australas. J Comb., 2008
2006
2005
Des. Codes Cryptogr., 2005
2004
Discret. Math., 2004
2003
Australas. J Comb., 2003
2001
Generalized Steiner Systems GS(2, 4, v, 2) with a Prime Power equiv 7 (mod 12).
Des. Codes Cryptogr., 2001
2000
Generalized Steiner Triple Systems with Group Size g = 7, 8.
Ars Comb., 2000