David J. W. Simpson
Orcid: 0000-0002-0284-6283Affiliations:
- Massey University, Institute of Fundamental Sciences, Palmerston North, New Zealand
According to our database1,
David J. W. Simpson
authored at least 20 papers
between 2008 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
2008
2010
2012
2014
2016
2018
2020
2022
2024
0
1
2
3
4
1
1
2
2
1
1
1
2
1
2
3
1
1
1
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2025
Robust Chaos in Orientation-Reversing and Non-Invertible Two-Dimensional Piecewise-Linear Maps.
J. Nonlinear Sci., February, 2025
2024
The bifurcation structure within robust chaos for two-dimensional piecewise-linear maps.
Commun. Nonlinear Sci. Numer. Simul., 2024
2023
A Synopsis of the Noninvertible, Two-Dimensional, Border-Collision Normal Form with Applications to Power Converters.
Int. J. Bifurc. Chaos, June, 2023
SIAM J. Appl. Math., April, 2023
2022
Int. J. Bifurc. Chaos, 2022
Chaos in the border-collision normal form: A computer-assisted proof using induced maps and invariant expanding cones.
Appl. Math. Comput., 2022
2020
Unfolding Codimension-Two Subsumed Homoclinic Connections in Two-Dimensional Piecewise-Linear Maps.
Int. J. Bifurc. Chaos, 2020
2019
Australas. J Comb., 2019
2018
Jitter in Piecewise-Smooth Dynamical Systems with Intersecting Discontinuity Surfaces.
Int. J. Bifurc. Chaos, 2018
2017
Subsumed Homoclinic Connections and Infinitely Many Coexisting Attractors in Piecewise-Linear Maps.
Int. J. Bifurc. Chaos, 2017
Int. J. Bifurc. Chaos, 2017
2016
2015
Taxonomic and functional metagenomic analysis of anodic communities in two pilot-scale microbial fuel cells treating different industrial wastewaters.
J. Integr. Bioinform., 2015
2014
Scaling Laws for Large Numbers of Coexisting Attracting Periodic Solutions in the Border-Collision Normal Form.
Int. J. Bifurc. Chaos, 2014
Sequences of Periodic Solutions and Infinitely Many Coexisting Attractors in the Border-Collision Normal Form.
Int. J. Bifurc. Chaos, 2014
On the relative coexistence of fixed points and period-two solutions near border-collision bifurcations.
Appl. Math. Lett., 2014
2013
2012
J. Nonlinear Sci., 2012
2008
SIAM J. Appl. Dyn. Syst., 2008