Daniel Wilczak
Orcid: 0000-0002-9934-3809
According to our database1,
Daniel Wilczak
authored at least 16 papers
between 2005 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
2005
2010
2015
2020
2025
0
1
2
3
4
1
2
1
1
1
1
1
3
1
2
1
1
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2025
Continuation and bifurcations of periodic orbits and symbolic dynamics in the Swift-Hohenberg equation.
Commun. Nonlinear Sci. Numer. Simul., 2025
2024
2023
Commun. Nonlinear Sci. Numer. Simul., April, 2023
2022
Commun. Nonlinear Sci. Numer. Simul., 2022
2021
CAPD: : DynSys: A flexible C++ toolbox for rigorous numerical analysis of dynamical systems.
Commun. Nonlinear Sci. Numer. Simul., 2021
2019
Validated numerics for period-tupling and touch-and-go bifurcations of symmetric periodic orbits in reversible systems.
Commun. Nonlinear Sci. Numer. Simul., 2019
2017
Systematic Computer-Assisted Proof of Branches of Stable Elliptic Periodic Orbits and Surrounding Invariant Tori.
SIAM J. Appl. Dyn. Syst., 2017
2016
SIAM J. Appl. Dyn. Syst., 2016
Coexistence and Dynamical Connections between Hyperchaos and Chaos in the 4D Rössler System: A Computer-Assisted Proof.
SIAM J. Appl. Dyn. Syst., 2016
An implicit algorithm for validated enclosures of the solutions to variational equations for ODEs.
Appl. Math. Comput., 2016
2010
Uniformly Hyperbolic Attractor of the Smale-Williams Type for a Poincaré Map in the Kuznetsov System.
SIAM J. Appl. Dyn. Syst., 2010
2009
Computer Assisted Proof of the Existence of Homoclinic Tangency for the Hénon Map and for the Forced Damped Pendulum.
SIAM J. Appl. Dyn. Syst., 2009
Found. Comput. Math., 2009
2006
The Existence of Shilnikov Homoclinic Orbits in the Michelson System: A Computer Assisted Proof.
Found. Comput. Math., 2006
2005
Symmetric Heteroclinic Connections in the Michelson System: A Computer Assisted Proof.
SIAM J. Appl. Dyn. Syst., 2005