Daniel Peterseim

Orcid: 0000-0001-7213-556X

According to our database1, Daniel Peterseim authored at least 54 papers between 2008 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
Riemannian Newton Methods for Energy Minimization Problems of Kohn-Sham Type.
J. Sci. Comput., October, 2024

Computational Multiscale Methods for Nondivergence-Form Elliptic Partial Differential Equations.
Comput. Methods Appl. Math., July, 2024

A super-localized generalized finite element method.
Numerische Mathematik, February, 2024

A reduced basis super-localized orthogonal decomposition for reaction-convection-diffusion problems.
J. Comput. Phys., February, 2024

Super-Localized Orthogonal Decomposition for High-Frequency Helmholtz Problems.
SIAM J. Sci. Comput., 2024

Computational Polyconvexification of Isotropic Functions.
Multiscale Model. Simul., 2024

Super-localised wave function approximation of Bose-Einstein condensates.
J. Comput. Phys., 2024

Hierarchical Super-Localized Orthogonal Decomposition Method.
CoRR, 2024

Positivity preserving finite element method for the Gross-Pitaevskii ground state: discrete uniqueness and global convergence.
CoRR, 2024

Hierarchical Rank-One Sequence Convexification for the Relaxation of Variational Problems with Microstructures.
CoRR, 2024

A simple collocation-type approach to numerical stochastic homogenization.
CoRR, 2024

Quantum Realization of the Finite Element Method.
CoRR, 2024

Mixed finite elements for the Gross-Pitaevskii eigenvalue problem: a priori error analysis and guaranteed lower energy bound.
CoRR, 2024

2023
Neural Network Approximation of Coarse-Scale Surrogates in Numerical Homogenization.
Multiscale Model. Simul., December, 2023

2022
Super-localization of elliptic multiscale problems.
Math. Comput., November, 2022

Multi-Resolution Localized Orthogonal Decomposition for Helmholtz Problems.
Multiscale Model. Simul., March, 2022

Localization and Delocalization of Ground States of Bose-Einstein Condensates Under Disorder.
SIAM J. Appl. Math., 2022

Multidimensional rank-one convexification of incremental damage models at finite strains.
CoRR, 2022

Super-localized orthogonal decomposition for convection-dominated diffusion problems.
CoRR, 2022

2021
Numerical homogenization beyond scale separation.
Acta Numer., May, 2021

A Priori Error Analysis of a Numerical Stochastic Homogenization Method.
SIAM J. Numer. Anal., 2021

The J-method for the Gross-Pitaevskii eigenvalue problem.
Numerische Mathematik, 2021

Energy-adaptive Riemannian optimization on the Stiefel manifold.
CoRR, 2021

Operator Compression with Deep Neural Networks.
CoRR, 2021

2020
Sobolev Gradient Flow for the Gross-Pitaevskii Eigenvalue Problem: Global Convergence and Computational Efficiency.
SIAM J. Numer. Anal., 2020

Sparse Compression of Expected Solution Operators.
SIAM J. Numer. Anal., 2020

Computational high frequency scattering from high-contrast heterogeneous media.
Math. Comput., 2020

Reconstruction of Quasi-Local Numerical Effective Models from Low-Resolution Measurements.
J. Sci. Comput., 2020

2019
Localized Computation of Eigenstates of Random Schrödinger Operators.
SIAM J. Sci. Comput., 2019

Computational multiscale methods for linear poroelasticity with high contrast.
J. Comput. Phys., 2019

2018
An analysis of a class of variational multiscale methods based on subspace decomposition.
Math. Comput., 2018

Numerical Homogenization of Heterogeneous Fractional Laplacians.
Multiscale Model. Simul., 2018

2017
On the stability of the Rayleigh-Ritz method for eigenvalues.
Numerische Mathematik, 2017

Eliminating the pollution effect in Helmholtz problems by local subscale correction.
Math. Comput., 2017

Computation of Quasi-Local Effective Diffusion Tensors and Connections to the Mathematical Theory of Homogenization.
Multiscale Model. Simul., 2017

Relaxing the CFL Condition for the Wave Equation on Adaptive Meshes.
J. Sci. Comput., 2017

2016
The norm of a discretized gradient in \(\varvec{H({{\mathrm{div}}})^*}\) for a posteriori finite element error analysis.
Numerische Mathematik, 2016

A Multiscale Method for Porous Microstructures.
Multiscale Model. Simul., 2016

Robust Numerical Upscaling of Elliptic Multiscale Problems at High Contrast.
Comput. Methods Appl. Math., 2016

Complexity of hierarchical refinement for a class of admissible mesh configurations.
Comput. Aided Geom. Des., 2016

2015
Computation of eigenvalues by numerical upscaling.
Numerische Mathematik, 2015

Simulation of Composite Materials by a Network FEM with Error Control.
Comput. Methods Appl. Math., 2015

Analysis-suitable adaptive T-mesh refinement with linear complexity.
Comput. Aided Geom. Des., 2015

2014
Two-Level Discretization Techniques for Ground State Computations of Bose-Einstein Condensates.
SIAM J. Numer. Anal., 2014

Composite finite elements for elliptic interface problems.
Math. Comput., 2014

Localization of elliptic multiscale problems.
Math. Comput., 2014

2013
Convergence of a Discontinuous Galerkin Multiscale Method.
SIAM J. Numer. Anal., 2013

Finite element network approximation of conductivity in particle composites.
Numerische Mathematik, 2013

Optimal adaptive nonconforming FEM for the Stokes problem.
Numerische Mathematik, 2013

Oversampling for the Multiscale Finite Element Method.
Multiscale Model. Simul., 2013

2012
Comparison Results of Finite Element Methods for the Poisson Model Problem.
SIAM J. Numer. Anal., 2012

Robustness of finite element simulations in densely packed random particle composites.
Networks Heterog. Media, 2012

Finite Elements for Elliptic Problems with Highly Varying, Nonperiodic Diffusion Matrix.
Multiscale Model. Simul., 2012

2008
The Composite Mini Element - Coarse Mesh Computation of Stokes Flows on Complicated Domains.
SIAM J. Numer. Anal., 2008


  Loading...