Dang Duc Trong

According to our database1, Dang Duc Trong authored at least 17 papers between 2009 and 2024.

Collaborative distances:
  • Dijkstra number2 of six.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
Cauchy problem for a semilinear elliptic equation with contaminated coefficients.
Commun. Nonlinear Sci. Numer. Simul., 2024

2023
Parameter estimation for diffusion process from perturbed discrete observations.
Commun. Stat. Simul. Comput., March, 2023

2021
A two-dimensional sideways problem with random discrete data.
Comput. Math. Appl., 2021

Backward problem for time-space fractional diffusion equations in Hilbert scales.
Comput. Math. Appl., 2021

2020
On Tikhonov's method and optimal error bound for inverse source problem for a time-fractional diffusion equation.
Comput. Math. Appl., 2020

Optimal error bound and truncation regularization method for a backward time-fractional diffusion problem in Hilbert scales.
Appl. Math. Lett., 2020

2019
Stability of solutions of a class of nonlinear fractional Laplacian parabolic problems.
J. Comput. Appl. Math., 2019

On a time-space fractional backward diffusion problem with inexact orders.
Comput. Math. Appl., 2019

Optimal regularization for an unknown source of space-fractional diffusion equation.
Appl. Math. Comput., 2019

2014
Ice formation in the Arctic during summer: False-bottoms.
Appl. Math. Comput., 2014

2013
A backward parabolic equation with a time-dependent coefficient: Regularization and error estimates.
J. Comput. Appl. Math., 2013

On a backward heat problem with time-dependent coefficient: Regularization and error estimates.
Appl. Math. Comput., 2013

2012
A Regularization of the Backward Problem for Nonlinear Parabolic Equation with Time-Dependent Coefficient.
Int. J. Math. Math. Sci., 2012

2011
A modified integral equation method of the semilinear backward heat problem.
Appl. Math. Comput., 2011

2010
A note on a Cauchy problem for the Laplace equation: Regularization and error estimates.
Appl. Math. Comput., 2010

The truncation method for a two-dimensional nonhomogeneous backward heat problem.
Appl. Math. Comput., 2010

2009
A new regularized method for two dimensional nonhomogeneous backward heat problem.
Appl. Math. Comput., 2009


  Loading...