Cristina Fernández-Córdoba

Orcid: 0000-0001-5880-144X

According to our database1, Cristina Fernández-Córdoba authored at least 66 papers between 2001 and 2024.

Collaborative distances:

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
On the equivalence of $\mathbb {Z}_{p^s}$-linear generalized Hadamard codes.
Des. Codes Cryptogr., April, 2024

Linearity and Classification of Z<sub>2</sub>Z<sub>4</sub>Z<sub>8</sub>-Linear Hadamard Codes.
CoRR, 2024

Computing efficiently a parity-check matrix for Zps-additive codes.
CoRR, 2024

On recursive constructions of $ \mathbb{Z}_2 \mathbb{Z}_4 \mathbb{Z}_8 $-linear Hadamard codes.
Adv. Math. Commun., 2024

Parity-Check Matrix for Z<sub>p<sup>s</sup></sub>-additive Codes: Efficient Computation.
Proceedings of the IEEE International Symposium on Information Theory, 2024

On the Classification of $\mathbb{Z}_{2}\mathbb{Z}_{4}\mathbb{Z}_{8}$-Linear Hadamard Codes.
Proceedings of the IEEE International Symposium on Information Theory, 2024

2023
Linearity and classification of ZpZp2-linear generalized Hadamard codes.
Finite Fields Their Appl., February, 2023

Z<sub>2</sub>Z<sub>4</sub>Z<sub>8</sub>-Additive Hadamard Codes.
CoRR, 2023

On ℤ2ℤ4ℤ8-Additive Hadamard Codes.
Proceedings of the IEEE International Symposium on Information Theory, 2023

2022
Nonlinearity and Kernel of Z-Linear Simplex and MacDonald Codes<sub> </sub>.
IEEE Trans. Inf. Theory, 2022

On the constructions of ZpZp2-linear generalized Hadamard codes.
Finite Fields Their Appl., 2022

On LCD, self dual and isodual cyclic codes over finite chain rings.
Finite Fields Their Appl., 2022

On the linearity and classification of ${\mathbb {Z}}_{p^s}$-linear generalized hadamard codes.
Des. Codes Cryptogr., 2022

Z<sub>p</sub>Z<sub>p<sup>2</sup></sub>...Z<sub>p<sup>s</sup></sub>-Additive Generalized Hadamard Codes.
CoRR, 2022

Construction and Linearity of Z_pZ_{p^2}-Linear Generalized Hadamard Codes.
CoRR, 2022

Equivalences among Z_{p^s}-linear Generalized Hadamard Codes.
CoRR, 2022

On Z<sub>p<sup>r</sup></sub>Z<sub>p<sup>r</sup></sub>Z<sub>p<sup>s</sup></sub>-Additive Cyclic Codes.
CoRR, 2022

On the Classification of ZpZp2 Generalized Hadamard Codes.
Proceedings of the IEEE Information Theory Workshop, 2022

Z2Z4-Linear Codes
Springer, ISBN: 978-3-031-05440-2, 2022

2021
Additive <i>G</i>-codes over Fq and their dualities.
Finite Fields Their Appl., 2021

Self-dual codes over a family of local rings.
Appl. Algebra Eng. Commun. Comput., 2021

On the Linearity and Structure of Z2s-Linear Simplex and MacDonald Codes.
Proceedings of the IEEE International Symposium on Information Theory, 2021

2020
On $\mathbb{Z}_{\text{8}}$ -Linear Hadamard Codes: Rank and Classification.
IEEE Trans. Inf. Theory, 2020

On Z2Z4-additive complementary dual codes and related LCD codes.
Finite Fields Their Appl., 2020

Equivalences among Z2s-linear Hadamard codes.
Discret. Math., 2020

Quaternary group ring codes: Ranks, kernels and self-dual codes.
Adv. Math. Commun., 2020

2019
${\mathbb{Z}_{2}\mathbb{Z}_{4}}$ -Additive Cyclic Codes: Kernel and Rank.
IEEE Trans. Inf. Theory, 2019

On $$\mathbb {Z}_{2^s}$$ Z 2 s -linear Hadamard codes: kernel and partial classification.
Des. Codes Cryptogr., 2019

On the Kernel of Z<sub>2<sup>s</sup></sub>-Linear Simplex and MacDonald Codes.
CoRR, 2019

2018
Binary Images of ℤ<sub>2</sub>ℤ<sub>4</sub>-Additive Cyclic Codes.
IEEE Trans. Inf. Theory, 2018

On the Rank of Z8-linear Hadamard Codes.
Electron. Notes Discret. Math., 2018

Z<sub>2</sub>-double cyclic codes.
Des. Codes Cryptogr., 2018

A characterization of ℤ<sub>2</sub>ℤ<sub>2</sub>[u]-linear codes.
Des. Codes Cryptogr., 2018

On the Kernel of Z<sub>2<sup>s</sup></sub>-Linear Hadamard Codes.
CoRR, 2018

On ℤ<sub>p<sup>r</sup></sub>ℤ<sub>p<sup>s</sup></sub>-additive cyclic codes.
Adv. Math. Commun., 2018

2017
There is exactly one $${\mathbb {Z}}_2{\mathbb {Z}}_4$$-cyclic 1-perfect code.
Des. Codes Cryptogr., 2017

ℤ<sub>2</sub>ℤ<sub>4</sub>-Additive Cyclic Codes: Kernel and Rank.
CoRR, 2017

Binary Images of Z2Z4-Additive Cyclic Codes.
CoRR, 2017

On the Kernel of \mathbb Z_2^s -Linear Hadamard Codes.
Proceedings of the Coding Theory and Applications - 5th International Castle Meeting, 2017

2016
${\mathbb {Z}}_{2}{\mathbb {Z}}_{4}$ -Additive Cyclic Codes, Generator Polynomials, and Dual Codes.
IEEE Trans. Inf. Theory, 2016

Quasi-cyclic codes as cyclic codes over a family of local rings.
Finite Fields Their Appl., 2016

Construction and classification of Z<sub>2<sup>s</sup></sub>-linear Hadamard codes.
Electron. Notes Discret. Math., 2016

Kernels and ranks of cyclic and negacyclic quaternary codes.
Des. Codes Cryptogr., 2016

Computing the generator polynomials of Z<sub>2</sub>Z<sub>4</sub>-additive cyclic codes.
CoRR, 2016

2015
Permutation decoding of ℤ<sub>2</sub>ℤ<sub>4</sub>-linear codes.
Des. Codes Cryptogr., 2015

There is exactly one Z2Z4-cyclic 1-perfect code.
CoRR, 2015

Self-dual codes from 3-class association schemes.
Appl. Algebra Eng. Commun. Comput., 2015

2014
$$\mathbb{Z }_2\mathbb{Z }_4$$ -Additive formally self-dual codes.
Des. Codes Cryptogr., 2014

Z2-double cyclic codes.
CoRR, 2014

Z2Z4-additive cyclic codes, generator polynomials and dual codes.
CoRR, 2014

2013
Permutation decoding of Z2Z4-linear codes
CoRR, 2013

2012
Characterization and constructions of self-dual codes over ℤ<sub>2</sub> × ℤ<sub>4</sub>.
Adv. Math. Commun., 2012

Extensions of Z2Z4-additive self-dual codes preserving their properties.
Proceedings of the 2012 IEEE International Symposium on Information Theory, 2012

2011
Involutions in Binary Perfect Codes.
IEEE Trans. Inf. Theory, 2011

Maximum distance separable codes over <i>Z</i><sub>4</sub> and <i>Z</i><sub>2</sub> ×\mathbb<i>Z</i><sub>4</sub>.
Des. Codes Cryptogr., 2011

Codes over ℤ<sub>2<sup>k</sup></sub>, Gray map and self-dual codes.
Adv. Math. Commun., 2011

2010
<i>Z</i><sub>2</sub><i>Z</i><sub>4</sub>linear codes: rank and kernel.
Des. Codes Cryptogr., 2010

On the minimum distance graph of an extended Preparata code.
Des. Codes Cryptogr., 2010

<i>Z</i><sub>2</sub><i>Z</i><sub>4</sub>-linear codes: generator matrices and duality.
Des. Codes Cryptogr., 2010

Additive codes over Z2× Z4.
Proceedings of the 2010 IEEE Information Theory Workshop, 2010

2009
Self-Dual Codes over Z_2xZ_4
CoRR, 2009

Propelinear structure of Z_{2k}-linear codes
CoRR, 2009

2008
ZRM Codes.
IEEE Trans. Inf. Theory, 2008

Z2Z4-linear codes: rank and kernel
CoRR, 2008

On Rank and Kernel of Z<sub>4</sub>-Linear Codes.
Proceedings of the Coding Theory and Applications, Second International Castle Meeting, 2008

2001
Every Z<sub>2k</sub>-Code is a Binary Propelinear Code.
Electron. Notes Discret. Math., 2001


  Loading...