Clóvis C. Gonzaga
Orcid: 0000-0001-7954-1106Affiliations:
- Federal University of Santa Catarina, Florianópolis, SC, Brazil
According to our database1,
Clóvis C. Gonzaga
authored at least 30 papers
between 1989 and 2023.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2023
Non-anticipative risk-averse analysis with effective scenarios applied to long-term hydrothermal scheduling.
Comput. Appl. Math., April, 2023
2020
Appl. Math. Comput., 2020
2016
On the worst case performance of the steepest descent algorithm for quadratic functions.
Math. Program., 2016
Comput. Optim. Appl., 2016
2014
Primal-Dual Relationship Between Levenberg-Marquardt and Central Trajectories for Linearly Constrained Convex Optimization.
J. Optim. Theory Appl., 2014
2013
SIAM J. Optim., 2013
Fine tuning Nesterov's steepest descent algorithm for differentiable convex programming.
Math. Program., 2013
2008
Numer. Linear Algebra Appl., 2008
2005
2004
Numer. Algorithms, 2004
2003
Math. Program., 2003
2002
Comput. Optim. Appl., 2002
1999
Complexity of Predictor-Corrector Algorithms for LCP Based on a Large Neighborhood of the Central Path.
SIAM J. Optim., 1999
1997
On the Quadratic Convergence of the Simplified Mizuno-Todd-Ye Algorithm for Linear Programming.
SIAM J. Optim., 1997
On the Convergence of the Mizuno-Todd-Ye Algorithm to the Analytic Center of the Solution Set.
SIAM J. Optim., 1997
1996
Math. Program., 1996
The largest step path following algorithm for monotone linear complementarity problems.
Math. Program., 1996
Convergence of Interior Point Algorithms for the Monotone Linear Complementarity Problem.
Math. Oper. Res., 1996
1992
An (O√(n) L)-Iteration Large-Step Primal-Dual Affine Algorithm for Linear Programming.
SIAM J. Optim., 1992
1991
Large Step Path-Following Methods for Linear Programming, Part II: Potential Reduction Method.
SIAM J. Optim., 1991
Large Step Path-Following Methods for Linear Programming, Part I: Barrier Function Method.
SIAM J. Optim., 1991
Math. Program., 1991
Math. Program., 1991
1989