Cláudia Valls
According to our database1,
Cláudia Valls
authored at least 43 papers
between 2007 and 2025.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2025
Correction: On the Existence of Symmetric Bicircular Central Configurations of the 3n-Body Problem.
J. Nonlinear Sci., February, 2025
2023
The Extended 16th Hilbert Problem for Discontinuous Piecewise Systems Formed by Linear Centers and Linear Hamiltonian Saddles Separated by a Nonregular Line.
Int. J. Bifurc. Chaos, December, 2023
Period. Math. Hung., March, 2023
2022
Limit Cycles of Planar Discontinuous Piecewise Linear Hamiltonian Systems Without Equilibria Separated by Nonregular Curves.
Int. J. Bifurc. Chaos, 2022
2021
Limit Cycles of Planar Piecewise Differential Systems with Linear Hamiltonian Saddles.
Symmetry, 2021
On the Existence of Symmetric Bicircular Central Configurations of the 3n-Body Problem.
J. Nonlinear Sci., 2021
The Extended 16th Hilbert Problem for Discontinuous Piecewise Linear Centers Separated by a Nonregular Line.
Int. J. Bifurc. Chaos, 2021
Global Phase Portraits for the Kukles Systems of Degree 3 with ℤ2-Reversible Symmetries.
Int. J. Bifurc. Chaos, 2021
Commun. Nonlinear Sci. Numer. Simul., 2021
2020
Int. J. Bifurc. Chaos, 2020
Int. J. Bifurc. Chaos, 2020
Classification of Invariant Algebraic Curves and Nonexistence of Algebraic Limit Cycles in Quadratic Systems from Family (I) of the Chinese Classification.
Int. J. Bifurc. Chaos, 2020
Global Phase Portraits of ℤ2-Symmetric Planar Polynomial Hamiltonian Systems of Degree Three with a Nilpotent Saddle at the Origin.
Int. J. Bifurc. Chaos, 2020
Commun. Nonlinear Sci. Numer. Simul., 2020
2019
J. Nonlinear Sci., 2019
2018
Math. Comput. Simul., 2018
Int. J. Bifurc. Chaos, 2018
2017
J. Comput. Appl. Math., 2017
Appl. Math. Lett., 2017
2016
Center problem in the center manifold for quadratic differential systems in R<sup>3</sup>.
J. Symb. Comput., 2016
Int. J. Bifurc. Chaos, 2016
2015
The Completely Integrable Differential Systems are Essentially Linear Differential Systems.
J. Nonlinear Sci., 2015
Uniqueness and Non-uniqueness of Limit Cycles for Piecewise Linear Differential Systems with Three Zones and No Symmetry.
J. Nonlinear Sci., 2015
J. Comput. Appl. Math., 2015
Commun. Nonlinear Sci. Numer. Simul., 2015
Appl. Math. Lett., 2015
Center problem in the center manifold for quadratic and cubic differential systems in R<sup>3</sup>.
Appl. Math. Comput., 2015
2014
Period. Math. Hung., 2014
Appl. Math. Lett., 2014
Appl. Math. Comput., 2014
2013
On the Number of Limit cycles for a Generalization of LiéNard Polynomial differential Systems.
Int. J. Bifurc. Chaos, 2013
Generalized Weierstrass integrability for the complex differential equations dydx=a(x)y4+b(x)y3+c(x)y2+d(x)y+e(x).
Appl. Math. Lett., 2013
2012
Open Syst. Inf. Dyn., 2012
2011
Comput. Math. Appl., 2011
2010
Int. J. Bifurc. Chaos, 2010
2007