Charles Mackin

Orcid: 0000-0001-8413-5583

According to our database1, Charles Mackin authored at least 20 papers between 2013 and 2024.

Collaborative distances:

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2024
VHDL-Eval: A Framework for Evaluating Large Language Models in VHDL Code Generation.
CoRR, 2024

Chain-of-Descriptions: Improving Code LLMs for VHDL Code Generation and Summarization.
Proceedings of the 2024 ACM/IEEE International Symposium on Machine Learning for CAD, 2024

2023
An analog-AI chip for energy-efficient speech recognition and transcription.
Nat., 2023

Using the IBM Analog In-Memory Hardware Acceleration Kit for Neural Network Training and Inference.
CoRR, 2023

Hardware-aware training for large-scale and diverse deep learning inference workloads using in-memory computing-based accelerators.
CoRR, 2023

Phase Change Memory-based Hardware Accelerators for Deep Neural Networks (invited).
Proceedings of the 2023 IEEE Symposium on VLSI Technology and Circuits (VLSI Technology and Circuits), 2023

Architectures and Circuits for Analog-memory-based Hardware Accelerators for Deep Neural Networks (Invited).
Proceedings of the IEEE International Symposium on Circuits and Systems, 2023

Impact of Phase-Change Memory Drift on Energy Efficiency and Accuracy of Analog Compute-in-Memory Deep Learning Inference (Invited).
Proceedings of the IEEE International Reliability Physics Symposium, 2023

2022
Precision of bit slicing with in-memory computing based on analog phase-change memory crossbars.
Neuromorph. Comput. Eng., 2022

Analog-memory-based 14nm Hardware Accelerator for Dense Deep Neural Networks including Transformers.
Proceedings of the IEEE International Symposium on Circuits and Systems, 2022

2021
Toward Software-Equivalent Accuracy on Transformer-Based Deep Neural Networks With Analog Memory Devices.
Frontiers Comput. Neurosci., 2021

Circuit Techniques for Efficient Acceleration of Deep Neural Network Inference with Analog-AI (Invited).
Proceedings of the IEEE International Symposium on Circuits and Systems, 2021


2020
Optimization of Analog Accelerators for Deep Neural Networks Inference.
Proceedings of the IEEE International Symposium on Circuits and Systems, 2020

Neuromorphic Computing with Phase Change, Device Reliability, and Variability Challenges.
Proceedings of the 2020 IEEE International Reliability Physics Symposium, 2020

Accelerating Deep Neural Networks with Analog Memory Devices.
Proceedings of the 2nd IEEE International Conference on Artificial Intelligence Circuits and Systems, 2020

2019
AI hardware acceleration with analog memory: Microarchitectures for low energy at high speed.
IBM J. Res. Dev., 2019

2018
Graphene chemical and biological sensors: modeling, systems, and applications.
PhD thesis, 2018

Frequency Response of Graphene Electrolyte-Gated Field-Effect Transistors.
Sensors, 2018

2013
Rapid exploration of processing and design guidelines to overcome carbon nanotube variations.
Proceedings of the 50th Annual Design Automation Conference 2013, 2013


  Loading...