Chaoqian Li
Orcid: 0000-0003-3754-8734
According to our database1,
Chaoqian Li
authored at least 34 papers
between 2014 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2024
Upper triangulation-based infinity norm bounds for the inverse of Nekrasov matrices with applications.
Numer. Algorithms, December, 2024
Randomized block Krylov subspace algorithms for low-rank quaternion matrix approximations.
Numer. Algorithms, June, 2024
Fixed-precision randomized quaternion singular value decomposition algorithm for low-rank quaternion matrix approximations.
Neurocomputing, 2024
2023
Inf. Sci., June, 2023
2022
Manifold Regularization Nonnegative Triple Decomposition of Tensor Sets for Image Compression and Representation.
J. Optim. Theory Appl., 2022
A nonmonotone accelerated Levenberg-Marquardt method for the -eigenvalues of symmetric tensors.
Int. Trans. Oper. Res., 2022
2021
A Fast Tensor Completion Method Based on Tensor QR Decomposition and Tensor Nuclear Norm Minimization.
IEEE Trans. Computational Imaging, 2021
Complex., 2021
Comput. Appl. Math., 2021
Investigation on Computational Thinking of Normal Students Based on Technology Acceptance Model.
Proceedings of the ICDEL 2021: The 6th International Conference on Distance Education and Learning, Shanghai, China, May 21, 2021
2020
Numer. Algorithms, 2020
A Subspace Modified Broyden-Fletcher-Goldfarb-Shanno Method for <i>B</i>-eigenvalues of Symmetric Tensors.
J. Optim. Theory Appl., 2020
An iterative algorithm based on strong H-tensors for identifying positive definiteness of irreducible homogeneous polynomial forms.
J. Comput. Appl. Math., 2020
J. Comput. Appl. Math., 2020
Eigenvalue bounds of third-order tensors via the minimax eigenvalue of symmetric matrices.
Comput. Appl. Math., 2020
M-eigenvalue intervals and checkable sufficient conditions for the strong ellipticity.
Appl. Math. Lett., 2020
2019
J. Comput. Appl. Math., 2019
Z-eigenvalues based structured tensors: $$\mathcal {M}_z$$-tensors and strong $$\mathcal {M}_z$$-tensors.
Comput. Appl. Math., 2019
Pseudospectra localizations for generalized tensor eigenvalues to seek more positive definite tensors.
Comput. Appl. Math., 2019
Appl. Math. Comput., 2019
2018
Symmetry, 2018
Numer. Algorithms, 2018
Error bounds for linear complementarity problems of S-Nekrasov matrices and B-S-Nekrasov matrices.
J. Comput. Appl. Math., 2018
2017
New error bounds for linear complementarity problems of Nekrasov matrices and B-Nekrasov matrices.
Numer. Algorithms, 2017
Appl. Math. Comput., 2017
2016
Numer. Algorithms, 2016
Weakly chained diagonally dominant B-matrices and error bounds for linear complementarity problems.
Numer. Algorithms, 2016
J. Comput. Appl. Math., 2016
Appl. Math. Lett., 2016
2014
J. Comput. Appl. Math., 2014
Inequalities for the Minimum Eigenvalue of Doubly Strictly Diagonally Dominant M-Matrices.
J. Appl. Math., 2014
J. Appl. Math., 2014
Some new preconditioned generalized AOR methods for generalized least-squares problems.
Int. J. Comput. Math., 2014