Bernhard A. Schmitt

Orcid: 0000-0001-5797-8024

According to our database1, Bernhard A. Schmitt authored at least 17 papers between 1970 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
Implicit Peer Triplets in Gradient-Based Solution Algorithms for ODE Constrained Optimal Control.
J. Optim. Theory Appl., October, 2024

2023
Exact Discrete Solutions of Boundary Control Problems for the 1D Heat Equation.
J. Optim. Theory Appl., March, 2023

2022
Discrete adjoint implicit Peer methods in optimal control.
J. Comput. Appl. Math., 2022

A Stiff MOL Boundary Control Problem for the 1D Heat Equation with Exact Discrete Solution.
CoRR, 2022

Implicit A-Stable Peer Triplets for ODE Constrained Optimal Control Problems.
Algorithms, 2022

2017
Efficient A-stable peer two-step methods.
J. Comput. Appl. Math., 2017

2014
Reprint of: Peer methods with improved embedded sensitivities for parameter-dependent ODEs.
J. Comput. Appl. Math., 2014

Peer methods with improved embedded sensitivities for parameter-dependent ODEs.
J. Comput. Appl. Math., 2014

2013
Dew drops on spider webs: A symmetry breaking bifurcation for a parabolic differential-algebraic equation.
J. Comput. Appl. Math., 2013

2012
Peer Two-Step Methods with Embedded Sensitivity Approximation for Parameter-Dependent ODEs.
SIAM J. Numer. Anal., 2012

2010
Parallel start for explicit parallel two-step peer methods.
Numer. Algorithms, 2010

2008
Explicit two-step peer methods.
Comput. Math. Appl., 2008

Explicit multi-step peer methods for special second-order differential equations.
Appl. Math. Comput., 2008

2004
Parallel Two-Step W-Methods with Peer Variables.
SIAM J. Numer. Anal., 2004

2001
Parallel Two-Step W-Methods on Singular Perturbation Problems.
Proceedings of the Parallel Processing and Applied Mathematics, 2001

1998
Order Results for Krylov-W-Methods.
Computing, 1998

1970
Die Berechnung von Schranken für den Wertebereich eines Polynoms in einem Intervall.
Computing, 1970


  Loading...