Beiliang Du

Orcid: 0000-0003-0197-2509

Affiliations:
  • Suzhou University, Department of Mathematics, China


According to our database1, Beiliang Du authored at least 44 papers between 1990 and 2018.

Collaborative distances:

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2018
A construction for optimal c-splitting authentication and secrecy codes.
Des. Codes Cryptogr., 2018

2016
A new class of 2-fold perfect 4-splitting authentication codes.
Ars Comb., 2016

2015
A construction of t-fold perfect splitting authentication codes with equal deception probabilities.
Cryptogr. Commun., 2015

2014
Some new results on mutually orthogonal frequency squares.
Discret. Math., 2014

A construction for t-fold perfect authentication codes with arbitration.
Des. Codes Cryptogr., 2014

P<sub>2k+1</sub>-factorization of symmetric complete bipartite multi-digraphs.
Ars Comb., 2014

2013
The Existence of Augmented Resolvable Candelabra Quadruple Systems with Three Even Groups.
Graphs Comb., 2013

On bipartite factorization of complete bipartite multigraphs.
Ars Comb., 2013

2012
(1, 2)-resolvable candelabra quadruple systems and Steiner quadruple systems.
Discret. Math., 2012

The last twenty orders of (1, 2)-resolvable Steiner quadruple systems.
Discret. Math., 2012

A new class of 3-fold perfect splitting authentication codes.
Des. Codes Cryptogr., 2012

2011
The Spectrum of Tetrahedral Quadruple Systems.
Graphs Comb., 2011

Support sizes of threefold quadruple systems.
Discret. Math., 2011

A new class of splitting 3-designs.
Des. Codes Cryptogr., 2011

2010
The existence of augmented resolvable Steiner quadruple systems.
Discret. Math., 2010

2009
Uniformly resolvable three-wise balanced designs with block sizes four and six.
Discret. Math., 2009

2008
P<sub>5</sub>-factorization of complete bipartite graphs.
Discret. Math., 2008

2006
Existence of resolvable optimal strong partially balanced designs.
Discret. Appl. Math., 2006

2005
Resolvable optimal strong partially balanced designs with block size four.
Discret. Math., 2005

The existence of resolvable Mendelsohn designs RMD({3, s<sup>*</sup>}, v).
Australas. J Comb., 2005

Splitting balanced incomplete block designs.
Australas. J Comb., 2005

2004
<i>K<sub>p, q</sub></i>-factorization of the complete bipartite graph <i>K<sub>m, n</sub></i>.
Discret. Math., 2004

Existence of optimal strong partially balanced designs with block size five.
Discret. Math., 2004

The spectrum of optimal strong partially balanced designs with block size five.
Discret. Math., 2004

Kirkman packing designs KPD ({w, s<sup>ast</sup>}, v) and related threshold schemes.
Discret. Math., 2004

2003
Existence of self-orthogonal diagonal Latin squares with a missing subsquare.
Discret. Math., 2003

The existence of three idempotent IMOLS.
Discret. Math., 2003

2002
<i>K</i>l, <i><sub>k</sub></i>-factorization of complete bipartite graphs.
Discret. Math., 2002

K<sub>1, pq</sub>-factorization of complete bipartite graphs.
Australas. J Comb., 2002

2001
The existence of bimatching designs.
Australas. J Comb., 2001

2000
P<sub>2k</sub>-factorization of complete bipartite multigraphs.
Australas. J Comb., 2000

1999
The Existence of Self-Conjugate Self-Orthogonal Idempotent Diagonal Latin Squares.
Ars Comb., 1999

P<sub>3</sub>-factorization of complete bipartite symmetric digraphs.
Australas. J Comb., 1999

1998
K<sub>1, p<sup>2</sup></sub>-factorization of complete bipartite graphs.
Discret. Math., 1998

1996
The existence of orthogonal diagonal Latin squares with subsquares.
Discret. Math., 1996

1995
On the existence of three incomplete idempotent MOLS.
Australas. J Comb., 1995

On complementary path decompositions of the complete multigraph.
Australas. J Comb., 1995

1994
On the existence of incomplete transversal designs with block size five.
Discret. Math., 1994

A few more BIBDs with k=8 or 9.
Australas. J Comb., 1994

On the existence of self-orthogonal diagonal Latin squares.
Australas. J Comb., 1994

1993
New bounds for pairwise orthogonal diagonal Latin squares.
Australas. J Comb., 1993

1992
More mutually orthogonal Latin squares.
Australas. J Comb., 1992

1991
A few more RBIBDs with k = 5 and lambda = 1.
Discret. Math., 1991

1990
On the existence of (v, 7, 1)-perfect Mendelsohn designs.
Discret. Math., 1990


  Loading...