Awad I. El-Gohary

Affiliations:
  • Mansoura University, Mansoura, Egypt


According to our database1, Awad I. El-Gohary authored at least 21 papers between 2002 and 2011.

Collaborative distances:
  • Dijkstra number2 of seven.
  • Erdős number3 of six.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2011
Chaos, estimation and optimal control of habitat destruction model with uncertain parameters.
Comput. Math. Appl., 2011

2005
Estimations of the parameters in a three non-independent component series system subjected to sources of shocks.
Appl. Math. Comput., 2005

Optimal control of stochastic lattice of prey-predator models.
Appl. Math. Comput., 2005

2004
Reliability equivalence of a series-parallel system.
Appl. Math. Comput., 2004

Optimal control of the rotational motion of a rigid body using moving masses.
Appl. Math. Comput., 2004

On the orientation of a rigid body using point masses.
Appl. Math. Comput., 2004

On the control of a rigid body motion affected by stochastic white Gaussian noises.
Appl. Math. Comput., 2004

Estimations of parameters in a three state reliability semi-Markov model.
Appl. Math. Comput., 2004

Bayesian estimations of parameters in a three state reliability semi-Markov models.
Appl. Math. Comput., 2004

Bayesian estimation of the parameters in two non-independent component series system with dependent time failure rate.
Appl. Math. Comput., 2004

Bayes estimation of parameters in a three non-independent component series system with time dependent failure rate.
Appl. Math. Comput., 2004

2003
Parameter estimations of 1-out-of-2: G repairable system.
Appl. Math. Comput., 2003

Exponential control of a rotational motion of a rigid body using quaternions.
Appl. Math. Comput., 2003

Optimal stabilization of steady-states of the genital herpes epidemic during infinite and finite time intervals.
Appl. Math. Comput., 2003

Optimal control of stochastic prey-predator models.
Appl. Math. Comput., 2003

Optimal control of Lorenz system during different time intervals.
Appl. Math. Comput., 2003

Optimal control of non-homogenous prey-predator models during infinite and finite time intervals.
Appl. Math. Comput., 2003

Optimal stabilization of a rigid body motion using rotors system.
Appl. Math. Comput., 2003

Optimal control of an angular motion of a rigid body during infinite and finite time intervals.
Appl. Math. Comput., 2003

2002
Exponential control of equilibrium positions of a rigid body using quaternions.
Appl. Math. Comput., 2002

Global stabilization of a rotational motion of a rigid body using rotors system.
Appl. Math. Comput., 2002


  Loading...