Asif Khan

Orcid: 0000-0001-9290-1313

Affiliations:
  • Aligarh Muslim University, Department of Mathematics, India


According to our database1, Asif Khan authored at least 13 papers between 2012 and 2023.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of five.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2023
Shape preserving properties of $ (\mathfrak{p}, \mathfrak{q}) $ Bernstein Bèzier curves and corresponding results over $ [a, b] $.
Math. Found. Comput., 2023

2022
Convergence of modified Szász-Mirakyan-Durrmeyer operators depending on certain parameters.
Math. Found. Comput., 2022

2021
q-Binomial Convolution and Transformations of q-Appell Polynomials.
Axioms, 2021

2020
Approximation properties and error estimation of q-Bernstein shifted operators.
Numer. Algorithms, 2020

2019
Improved approximation and error estimations by King type (<i>p, q</i>)-Szász-Mirakjan Kantorovich operators.
Appl. Math. Comput., 2019

2016
Erratum to "On (p, q)-analogue of Bernstein Operators" [Appl. Math. Comput. (2015) 874-882].
Appl. Math. Comput., 2016

2015
Corrigendum to: "Some approximation results by (p, q)-analogue of Bernstein-Stancu operators" [Appl. Math. Comput. 264(2015)392-402].
Appl. Math. Comput., 2015

On (p, q)-analogue of Bernstein operators.
Appl. Math. Comput., 2015

Some approximation results by (p, q)-analogue of Bernstein-Stancu operators.
Appl. Math. Comput., 2015

2014
Statistical approximation for new positive linear operators of Lagrange type.
Appl. Math. Comput., 2014

2013
Operators constructed by means of q-Lagrange polynomials and A-statistical approximation.
Appl. Math. Comput., 2013

Approximation for periodic functions via weighted statistical convergence.
Appl. Math. Comput., 2013

2012
Generalized equi-statistical convergence of positive linear operators and associated approximation theorems.
Math. Comput. Model., 2012


  Loading...