Ashish Kumar Upadhyay
Orcid: 0000-0001-6307-6799
According to our database1,
Ashish Kumar Upadhyay
authored at least 34 papers
between 2010 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on orcid.org
On csauthors.net:
Bibliography
2024
ℤ<sub>4</sub>ℤ<sub>4</sub>ℤ<sub>4</sub>-additive cyclic codes are asymptotically good.
Appl. Algebra Eng. Commun. Comput., July, 2024
A direct construction of complete complementary code with zero correlation zone property for prime-power length.
Cryptogr. Commun., March, 2024
A study of QECCs and EAQECCs construction from cyclic codes over the ring ${\mathbb {F}}_q+v_1{\mathbb {F}}_q+v_2{\mathbb {F}}_q+\cdots +v_s{\mathbb {F}}_q$.
Quantum Inf. Process., February, 2024
2023
Oper. Res. Lett., November, 2023
Self-dual and LCD double circulant and double negacirculant codes over a family of finite rings $ \mathbb {F}_{q}[v_{1}, v_{2},\dots ,v_{t}]$.
Cryptogr. Commun., May, 2023
$${\mathbb {F}}_{2}[u]{\mathbb {F}}_{2}[u] $$-additive cyclic codes are asymptotically good.
J. Appl. Math. Comput., February, 2023
On a class of skew constacyclic codes over mixed alphabets and applications in constructing optimal and quantum codes.
Cryptogr. Commun., 2023
Self-Dual Double Circulant, Self-Dual Double Negacirculant and LCD Double Negacirculant Codes Over the Ring F<sub>q</sub>[u,v]/2 - u, v<sup>2</sup>-v, uv-vu>.
IEEE Access, 2023
2022
Constacyclic codes over $${\pmb {\mathbb {F}}}_{q^2}[u]/\langle u^2-w^2 \rangle $$ and their application in quantum code construction.
J. Appl. Math. Comput., December, 2022
Direct Construction of Optimal Z-Complementary Code Sets With Even Lengths by Using Generalized Boolean Functions.
IEEE Signal Process. Lett., 2022
A Direct Construction of 2D-CCC with Arbitrary Array Size and Flexible Set Size Using Multivariable Function.
CoRR, 2022
On Z<sub>p<sup>r</sup></sub>Z<sub>p<sup>r</sup></sub>Z<sub>p<sup>s</sup></sub>-Additive Cyclic Codes.
CoRR, 2022
2021
J. Appl. Math. Comput., October, 2021
Constacyclic codes over mixed alphabets and their applications in constructing new quantum codes.
Quantum Inf. Process., 2021
Discret. Math., 2021
Discret. Math., 2021
A Direct Construction of Prime-Power-Length Zero-Correlation Zone Sequences for QS-CDMA System.
CoRR, 2021
Direct Construction of Optimal Z-Complementary Code Sets for all Possible Even Length by Using Pseudo-Boolean Functions.
CoRR, 2021
Proceedings of the Seventh International Conference on Mathematics and Computing, 2021
2020
IEEE Commun. Lett., 2020
Quantum codes from skew constacyclic codes over the ring Fq[u, v]∕〈u2-1, v2-1, uv-vu〉.
Discret. Math., 2020
Corrigendum to "On the enumeration of a class of toroidal graphs" [Contrib. Discrete Math. 13 (2018), no. 1, 79-119].
Contributions Discret. Math., 2020
A Study of F<sub>q</sub>R-Cyclic Codes and Their Applications in Constructing Quantum Codes.
IEEE Access, 2020
On the Structure of Cyclic Codes Over 𝔽<sub>q</sub>RS and Applications in Quantum and LCD Codes Constructions.
IEEE Access, 2020
Quantum Codes Obtained From Constacyclic Codes Over a Family of Finite Rings F<sub>p</sub>[u₁, u₂, ..., u<sub>s</sub>].
IEEE Access, 2020
2019
Quantum codes from \((1-2u_1-2u_2-\cdots -2u_m)\) -skew constacyclic codes over the ring \(F_q+u_1F_{q}+\cdots +u_{2m}F_{q}\).
Quantum Inf. Process., 2019
2018
Discret. Math. Algorithms Appl., 2018
2014
Electron. J. Graph Theory Appl., 2014
2012
Discret. Math. Algorithms Appl., 2012
2010