Anthony N. Pettitt
Orcid: 0000-0002-4816-4595
According to our database1,
Anthony N. Pettitt
authored at least 22 papers
between 1992 and 2018.
Collaborative distances:
Collaborative distances:
Timeline
1995
2000
2005
2010
2015
0
1
2
3
4
5
1
1
2
4
2
1
1
2
2
1
1
2
1
1
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
On csauthors.net:
Bibliography
2018
ABC model selection for spatial extremes models applied to South Australian maximum temperature data.
Comput. Stat. Data Anal., 2018
2017
Stat. Comput., 2017
2016
A pseudo-marginal sequential Monte Carlo algorithm for random effects models in Bayesian sequential design.
Stat. Comput., 2016
Comput. Stat. Data Anal., 2016
2015
Melanoma Cell Colony Expansion Parameters Revealed by Approximate Bayesian Computation.
PLoS Comput. Biol., 2015
IEEE Pervasive Comput., 2015
Comput. Stat. Data Anal., 2015
2014
Towards Bayesian experimental design for nonlinear models that require a large number of sampling times.
Comput. Stat. Data Anal., 2014
Marginal reversible jump Markov chain Monte Carlo with application to motor unit number estimation.
Comput. Stat. Data Anal., 2014
2013
Sequential Monte Carlo for Bayesian sequentially designed experiments for discrete data.
Comput. Stat. Data Anal., 2013
2012
A new variational Bayesian algorithm with application to human mobility pattern modeling.
Stat. Comput., 2012
2011
Comput. Stat. Data Anal., 2011
2009
Stat. Comput., 2009
A fully Bayesian approach to inference for Coxian phase-type distributions with covariate dependent mean.
Comput. Stat. Data Anal., 2009
2007
Stability of Approximations of Average Run Length of Risk-Adjusted CUSUM Schemes Using the Markov Approach: Comparing Two Methods of Calculating Transition Probabilities.
Commun. Stat. Simul. Comput., 2007
2002
A Conditional Autoregressive Gaussian Process for Irregularly Spaced Multivariate Data with Application to Modelling Large Sets of Binary Data.
Stat. Comput., 2002
1999
Spatial modelling for binary data using␣a␣hidden conditional autoregressive Gaussian process: a multivariate extension of the probit model.
Stat. Comput., 1999
1994
1992