Annalisa Buffa
Orcid: 0000-0003-0384-0876Affiliations:
- EPFL, Lausanne, Switzerland
According to our database1,
Annalisa Buffa
authored at least 64 papers
between 2000 and 2024.
Collaborative distances:
Collaborative distances:
Timeline
Legend:
Book In proceedings Article PhD thesis Dataset OtherLinks
Online presence:
-
on zbmath.org
-
on orcid.org
-
on d-nb.info
On csauthors.net:
Bibliography
2024
An interior penalty coupling strategy for isogeometric non-conformal Kirchhoff-Love shell patches.
Eng. Comput., October, 2024
Comput. Aided Des., February, 2024
The Immersed Boundary Conformal Method for Kirchhoff-Love and Reissner-Mindlin shells.
CoRR, 2024
CoRR, 2024
2023
J. Comput. Phys., April, 2023
CoRR, 2023
CoRR, 2023
Fast parametric analysis of trimmed multi-patch isogeometric Kirchhoff-Love shells using a local reduced basis method.
CoRR, 2023
CoRR, 2023
Can Knowledge Transfer Techniques Compensate for the Limited Myocardial Infarction Data by Leveraging Hæmodynamics? An in silico Study.
Proceedings of the Artificial Intelligence in Medicine, 2023
2022
A localized reduced basis approach for unfitted domain methods on parameterized geometries.
CoRR, 2022
A mathematical theory for mass lumping and its generalization with applications to isogeometric analysis.
CoRR, 2022
Reduced order modelling of nonaffine problems on parameterized NURBS multipatch geometries.
CoRR, 2022
Comput. Aided Geom. Des., 2022
2021
SIAM J. Sci. Comput., 2021
CoRR, 2021
CoRR, 2021
Fast and Multiscale Formation of Isogeometric matrices of Microstructured Geometric Models.
CoRR, 2021
Coupling of non-conforming trimmed isogeometric Kirchhoff-Love shells via a projected super-penalty approach.
CoRR, 2021
2020
SIAM J. Sci. Comput., 2020
SIAM J. Numer. Anal., 2020
Multipatch approximation of the de Rham sequence and its traces in isogeometric analysis.
Numerische Mathematik, 2020
CoRR, 2020
A projected super-penalty method for the C<sup>1</sup>-coupling of multi-patch isogeometric Kirchhoff plates.
CoRR, 2020
2019
Adaptive isogeometric analysis on two-dimensional trimmed domains based on a hierarchical approach.
CoRR, 2019
A hierarchical approach to the a posteriori error estimation of isogeometric Kirchhoff plates and Kirchhoff-Love shells.
CoRR, 2019
Comput. Aided Des., 2019
2016
Comput. Aided Geom. Des., 2016
2015
2014
Isogeometric methods for computational electromagnetics: B-spline and T-spline discretizations.
J. Comput. Phys., 2014
2013
Numer. Linear Algebra Appl., 2013
2011
SIAM J. Numer. Anal., 2011
Numerische Mathematik, 2011
The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes.
J. Comput. Phys., 2011
2010
J. Comput. Appl. Math., 2010
2009
Solving electromagnetic eigenvalue problems in polyhedral domains with nodal finite elements.
Numerische Mathematik, 2009
J. Sci. Comput., 2009
2008
2007
2006
Analysis of coordination in multi-agent systems through partial difference equations.
IEEE Trans. Autom. Control., 2006
SIAM J. Sci. Comput., 2006
SIAM J. Numer. Anal., 2006
Analysis of a Multiscale Discontinuous Galerkin Method for Convection-Diffusion Problems.
SIAM J. Numer. Anal., 2006
Proceedings of the Hybrid Systems: Computation and Control, 9th International Workshop, 2006
2005
Remarks on the Discretization of Some Noncoercive Operator with Applications to Heterogeneous Maxwell Equations.
SIAM J. Numer. Anal., 2005
Numerische Mathematik, 2005
2004
SIAM J. Numer. Anal., 2004
2003
SIAM J. Sci. Comput., 2003
Numerische Mathematik, 2003
The electric field integral equation on Lipschitz screens: definitions and numerical approximation.
Numerische Mathematik, 2003
2002
Numerische Mathematik, 2002
Numerische Mathematik, 2002
2001
SIAM J. Numer. Anal., 2001
2000
SIAM J. Appl. Math., 2000