Angel R. Francés

According to our database1, Angel R. Francés authored at least 17 papers between 1996 and 2016.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2016
The task-oriented occurrence pattern.
Proceedings of the 21st European Conference on Pattern Languages of Programs, 2016

2014
The <i>history-based authentication</i> pattern.
Proceedings of the 19th European Conference on Pattern Languages of Programs, 2014

2013
Generalized Simple Surface Points.
Proceedings of the Discrete Geometry for Computer Imagery, 2013

2012
A plate-based definition of discrete surfaces.
Pattern Recognit. Lett., 2012

2009
Universal Spaces for (k, k̅)-Surfaces.
Proceedings of the Discrete Geometry for Computer Imagery, 2009

2008
Determining Whether a Simplicial 3-Complex Collapses to a 1-Complex Is NP-Complete.
Proceedings of the Discrete Geometry for Computer Imagery, 2008

2007
Local characterization of a maximum set of digital (26, 6)-surfaces.
Image Vis. Comput., 2007

2004
Digital homotopy with obstacles.
Discret. Appl. Math., 2004

A Maximum Set of (26, 6)-Connected Digital Surfaces.
Proceedings of the Combinatorial Image Analysis, 10th InternationalWorkshop, 2004

2003
Homotopy in digital spaces.
Discret. Appl. Math., 2003

2002
Weak lighting functions and strong 26-surfaces.
Theor. Comput. Sci., 2002

Separation Theorems for Simplicity 26-Surfaces.
Proceedings of the Discrete Geometry for Computer Imagery, 10th International Conference, 2002

2001
A Digital Index Theorem.
Int. J. Pattern Recognit. Artif. Intell., 2001

2000
An Axiomatic Approach to Digital Topology.
Proceedings of the Digital and Image Geometry, 2000

1999
A Digital Lighting Function for Strong 26-Surfaces.
Proceedings of the Discrete Geometry for Computer Imagery, 1999

1997
Digital Lighting Functions.
Proceedings of the Discrete Geometry for Computer Imagery, 1997

1996
Determining the components of the complement of a digital (n-1)-manifold in Z<sup>n</sup>.
Proceedings of the Discrete Geometry for Computer Imagery, 1996


  Loading...