Ángel F. Tenorio

Orcid: 0000-0002-2480-5458

According to our database1, Ángel F. Tenorio authored at least 17 papers between 2006 and 2020.

Collaborative distances:
  • Dijkstra number2 of six.
  • Erdős number3 of three.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

Online presence:

On csauthors.net:

Bibliography

2020
Algorithm to compute minimal matrix representation of nilpotent lie algebras.
Int. J. Comput. Math., 2020

2017
Minimal faithful upper-triangular matrix representations for solvable Lie algebras.
J. Comput. Appl. Math., 2017

2016
Algorithmic method to obtain combinatorial structures associated with Leibniz algebras.
Math. Comput. Simul., 2016

2015
Algorithmic procedure to compute abelian subalgebras and ideals of maximal dimension of Leibniz algebras.
Int. J. Comput. Math., 2015

Design of an Efficient Algorithm to Determine a Near-Optimal Location of Parking Areas for Dangerous Goods in the European Road Transport Network.
Proceedings of the Computational Logistics - 6th International Conference, 2015

2013
Graph operations and Lie algebras.
Int. J. Comput. Math., 2013

2012
A computational study of a family of nilpotent Lie algebras.
J. Supercomput., 2012

Computational calculus of the law of a family of solvable Lie algebras.
J. Comput. Methods Sci. Eng., 2012

Algorithmic method to obtain abelian subalgebras and ideals in Lie algebras.
Int. J. Comput. Math., 2012

Combinatorial structures of three vertices and Lie algebras.
Int. J. Comput. Math., 2012

Combinatorial structures and Lie algebras of upper triangular matrices.
Appl. Math. Lett., 2012

2011
Complete triangular structures and Lie algebras.
Int. J. Comput. Math., 2011

2010
Computing Matrix Representations of Filiform Lie Algebras.
Proceedings of the Computer Algebra in Scientific Computing - 12th International Workshop, 2010

2009
Computing the Law of a Family of Solvable Lie Algebras.
Int. J. Algebra Comput., 2009

Algorithm to compute the maximal abelian dimension of Lie algebras.
Computing, 2009

Lie Theory: Applications to problems in Mathematical Finance and Economics.
Appl. Math. Comput., 2009

2006
A method to obtain the lie group associated with a nilpotent lie algebra.
Comput. Math. Appl., 2006


  Loading...