Andrews Sobral

Orcid: 0000-0002-1047-3755

According to our database1, Andrews Sobral authored at least 14 papers between 2014 and 2023.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2023
Discovering Local Binary Pattern Equation for Foreground Object Removal in Videos.
CoRR, 2023

2021
Automated Mathematical Equation Structure Discovery for Visual Analysis.
CoRR, 2021

2017
Robust Low-Rank and Sparse Decomposition for Moving Object Detection: from Matrices to Tensors. (Détection d'objets mobiles dans des vidéos par décomposition en rang faible et parcimonieuse: de matrices à tenseurs).
PhD thesis, 2017

Matrix and tensor completion algorithms for background model initialization: A comparative evaluation.
Pattern Recognit. Lett., 2017

Decomposition into low-rank plus additive matrices for background/foreground separation: A review for a comparative evaluation with a large-scale dataset.
Comput. Sci. Rev., 2017

2016
Human Pose Estimation from Monocular Images: A Comprehensive Survey.
Sensors, 2016

2015
OR-PCA with dynamic feature selection for robust background subtraction.
Proceedings of the 30th Annual ACM Symposium on Applied Computing, 2015

Comparison of Matrix Completion Algorithms for Background Initialization in Videos.
Proceedings of the New Trends in Image Analysis and Processing - ICIAP 2015 Workshops, 2015

Online Stochastic Tensor Decomposition for Background Subtraction in Multispectral Video Sequences.
Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop, 2015

Background Subtraction via Superpixel-Based Online Matrix Decomposition with Structured Foreground Constraints.
Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop, 2015

Double-constrained RPCA based on saliency maps for foreground detection in automated maritime surveillance.
Proceedings of the 12th IEEE International Conference on Advanced Video and Signal Based Surveillance, 2015

2014
A comprehensive review of background subtraction algorithms evaluated with synthetic and real videos.
Comput. Vis. Image Underst., 2014

Incremental and Multi-feature Tensor Subspace Learning Applied for Background Modeling and Subtraction.
Proceedings of the Image Analysis and Recognition - 11th International Conference, 2014

OR-PCA with MRF for Robust Foreground Detection in Highly Dynamic Backgrounds.
Proceedings of the Computer Vision - ACCV 2014, 2014


  Loading...