Andrew O. Finley

Orcid: 0000-0002-2277-2912

According to our database1, Andrew O. Finley authored at least 18 papers between 2008 and 2024.

Collaborative distances:
  • Dijkstra number2 of five.
  • Erdős number3 of four.

Timeline

Legend:

Book 
In proceedings 
Article 
PhD thesis 
Dataset
Other 

Links

On csauthors.net:

Bibliography

2024
Spatial Prediction of Diameter Distributions for the Alpine Protection Forests in Ebensee, Austria, Using ALS/PLS and Spatial Distributional Regression Models.
Remote. Sens., June, 2024

Bayesian modeling of incompatible spatial data: A case study involving Post-Adrian storm forest damage assessment.
Int. J. Appl. Earth Obs. Geoinformation, 2024

2022
spNNGP <i>R</i> Package for Nearest Neighbor Gaussian Process Models.
J. Stat. Softw., 2022

A novel model to accurately predict continental-scale timing of forest green-up.
Int. J. Appl. Earth Obs. Geoinformation, 2022

2020
ForestFit: An R package for modeling plant size distributions.
Environ. Model. Softw., 2020

rFIA: An R package for estimation of forest attributes with the US Forest Inventory and Analysis database.
Environ. Model. Softw., 2020

Bayesian spatially varying coefficient models in the spBayes R package.
Environ. Model. Softw., 2020

2019
EcoMem: An R package for quantifying ecological memory.
Environ. Model. Softw., 2019

2017
Bayesian Spatial Regression for Multisource Predictive Mapping.
Proceedings of the Encyclopedia of GIS., 2017

2015
Linear Models for Airborne-Laser-Scanning-Based Operational Forest Inventory With Small Field Sample Size and Highly Correlated LiDAR Data.
IEEE Trans. Geosci. Remote. Sens., 2015

2013
Multivariate Spatial Regression Models for Predicting Individual Tree Structure Variables Using LiDAR Data.
IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens., 2013

Hierarchical Bayesian spatial models for predicting multiple forest variables using waveform LiDAR, hyperspectral imagery, and large inventory datasets.
Int. J. Appl. Earth Obs. Geoinformation, 2013

2012
Bayesian dynamic modeling for large space-time datasets using Gaussian predictive processes.
J. Geogr. Syst., 2012

Approximate Bayesian inference for large spatial datasets using predictive process models.
Comput. Stat. Data Anal., 2012

2011
Variational Bayesian methods for spatial data analysis.
Comput. Stat. Data Anal., 2011

2009
Improving the performance of predictive process modeling for large datasets.
Comput. Stat. Data Anal., 2009

2008
Bayesian Spatial Regression for Multi-source Predictive Mapping.
Proceedings of the Encyclopedia of GIS., 2008

Hierarchical multiresolution approaches for dense point-level breast cancer treatment data.
Comput. Stat. Data Anal., 2008


  Loading...